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Abstract

Bias and unfairness in machine learning models happen when they make biassed or unfair
decisions that perpetuate and amplify the unfair discrimination and exclusion of people.
Identifying and addressing bias and unfairness in those models in different application
domains is a multifaceted challenge. While numerous unfairness metrics have been pro-
posed, determining an optimal set of metrics for assessing a model’s unfairness remains an
open question in the literature due to the diverse nature of these metrics and the lack of
comprehensive approaches to ensure fairness across multiple applications. Consequently,
there is a pressing need to narrow down the metric space and identify representative
metrics for algorithmic unfairness evaluation. The current literature presents a limited
number of studies aimed at reducing the number of fairness metrics used when evaluating
a model, with the available techniques facing limitations, including restriction to spe-
cific application areas, dependence on the user’s understanding of the problem, and high
computational cost. Therefore, this study aims to propose a computational method that
allows the selection of the most representative metrics for bias and unfairness assessment
in post-processing for binary classification machine learning models in different contexts.
To achieve this goal, four case studies were used in the fields of criminal judgement, bank
loans, demographic census, and advertisement, with unfairness identified against the sen-
sitive attributes: race, gender, race, and age group. Furthermore, a correlation-based
strategy was used as a heuristic for selecting unfairness metrics. The potential problems
with the approach were then analysed, and solutions were proposed to mitigate these
problems and evaluate its effectiveness. The method starts the procedure using bootstrap
sampling in conjunction with the Markov chain Monte Carlo method. Modifications and
validation strategies are proposed, such as transitioning to a stratified sampling method
to better represent the data biases, incorporating a stopping criterion to reduce the com-
putational cost, shifting from Pearson to Kendall correlation for more robust estimations,
and validating the method by examining different aspects of the selected metrics. A sub-
stantial reduction in computational cost was noted, with an average decrease of 64.37%
in the number of models required and of 20.00% in processing time. Moreover, the pro-
posed method maintains result consistency by effectively pairing metrics with similar
behaviour. The proposed experiment was able to group metrics with similar equations
more frequently, making the presence of a similar term in the equation a strong indicator
of a direct relationship between two metrics.
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Abstract

While no standout metric emerges across all contexts, within specific models or datasets,
certain metrics consistently stand out. For the analysed cases, the Predictive Parity met-
ric was highlighted in the criminal judgement, demographic census, and advertisement
scenarios, while the Error Ratio metric was highlighted for the demographic census, and
Equalized Odds was in evidence in criminal judgment. Overall, the proposed method suc-
cessfully selects the representative metric with a considerable gain in computational costs.

Keywords: bias, unfairness, representative metric, correlation
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Resumo

O viés e a injustiça em modelos de aprendizado de máquina ocorrem quando esses tomam
decisões enviesadas ou injustas que perpetuam e amplificam a discriminação e exclusão
injusta de pessoas. Identificar e abordar o viés e a injustiça desses modelos em diferentes
domínios de aplicação é um desafio multifacetado. Apesar de várias métricas de injustiça
terem sido propostas, determinar um conjunto ideal de métricas para avaliar a injustiça
de um modelo continua sendo uma questão em aberto na literatura devido à natureza
diversa dessas métricas e a falta de métodos abrangentes que garantam a justiça em
múltiplas aplicações. Consequentemente, existe uma necessidade imediata de restringir a
quantidade de métricas e identificar as métricas representativas para a avaliação da in-
justiça algorítmica. A literatura atual apresenta um número limitado de estudos voltados
para a redução do número de métricas de injustiça utilizadas ao avaliar um modelo, com
as técnicas disponíveis enfrentam limitações, incluindo a restrição a áreas específicas de
aplicação, a dependência do entendimento do usuário sobre o problema, e o elevado custo
computacional. Portanto, este estudo tem como objetivo propor um método computa-
cional que permita a seleção das métricas mais representativas para avaliação de viés e
injustiça, em pós-processamento, para modelos de aprendizado de máquina de classifi-
cação binária em diferentes contextos. Para alcançar esse objetivo, são utilizados quatro
estudos de casos, nas áreas de julgamento criminal, empréstimo bancário, censo demográ-
fico e publicidade, com injustiças identificadas contra os atributos sensíveis: raça, gênero,
raça e faixa etária. Além disso, foi utilizado uma estratégia baseada em correlação como
uma heurística para a seleção de métricas de injustiça. Em seguida, foram analisados os
potenciais problemas da abordagem, propondo soluções para atenuar esses problemas e
avaliar a sua eficácia. O método inicia o procedimento utilizando uma amostragem por
bootstrap em conjunto com a técnica de Monte Carlo via cadeias de Markov. Modifi-
cações e estratégias de validação são propostas, como a transição para um método de
amostragem estratificada para representar melhor os vieses dos dados, incorporação de
um critério de parada para reduzir o custo computacional, substituição da correlação de
Pearson para a de Kendall para obter estimativas mais robustas, e a validação do método
por meio da análise de diferentes aspectos das métricas selecionadas. Foi constatado uma
redução substancial no custo computacional, com uma diminuição média de 64,37% no
número de modelos necessários e de 20,00% no tempo de processamento. Além disso, o
método proposto mantém a consistência dos resultados ao agrupar efetivamente métricas
com comportamento semelhante. O experimento proposto foi capaz de agrupar métricas
com equações semelhantes com mais frequência, tornando a presença de um termo semel-
hante na equação um forte indicador de uma relação direta entre duas métricas.
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Resumo

Embora não surja nenhuma métrica que se destaque em todos os contextos, certas métri-
cas se destacam em modelos ou conjuntos de dados específicos. Para os casos analisados,
a métrica de Paridade Preditiva se destacou nos cenários de julgamento criminal, censo
demográfico e publicidade, enquanto que a métrica de Taxa de Erro foi destaque no censo
demográfico, e a métrica de Probabilidades Equalizadas foi evidenciada no julgamento
criminal. De modo geral, o método proposto seleciona com sucesso as métricas mais rep-
resentativas, com considerável ganho em custo computacional.

Palavras-chave: viés, injustiça, métricas representativas, correlação
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Chapter One

Introduction

The United Nations (UN) Sustainable Development Goals (SDGs) communicate the chal-
lenges and threats to our societies, and include 17 goals for the 2030 agenda, including
those regarding social justice. Machine learning (ML) systems may assist or hinder these
goals, thus it’s important to be aware of the potential negative consequences (SÆTRA,
2022). ML algorithms used in decision-making systems, such as hiring processes, online
advertising, loan processing, criminal pre-trial, immigrant detention, and public health,
among other applications, are not free from bias and other issues related to sensitive social
aspects such as race, gender, religion, and so on (PAGANO et al., 2023a).

ML systems have a significant negative impact on SDGs 5, 10, 13, and 16, corresponding
respectively to: gender equality; reduced inequalities; climate action; and peace, justice,
and strong institutions. Human involvement in system development and data curation
unintentionally perpetuates pre-existing historical and social biases that disproportion-
ately affect marginalised groups, compromising SDGs 5 and 10 (SÆTRA, 2022). Training
large AI models on increasingly large datasets consumes a lot of electricity, contributing
significantly to carbon emissions. For example, the large language model (LLM) GPT-3 is
estimated to have consumed a 1287 MWh of electricity and produced 550 tons of carbon
dioxide during the training phase (BOLóN-CANEDO et al., 2024), thus negatively im-
pacting SDG 13. The lack of transparency and accountability also raises concerns about
the viability of those systems, potentially leading to unexpected negative consequences
and impacting SDG 16 (SÆTRA, 2022).

The importance of fair ML systems is recognised by policymakers and the academic com-
munity, with various researchers addressing the unfairness sources, impacts, and miti-
gation strategies (FERRARA, 2024). Identifying bias and unfairness, for example, is a
difficult task because definitions can change over time and/or be different for different
people and societies depending on historical, cultural, political, legal, social, and ethical
factors that vary in different contexts (MITCHELL et al., 2019; PAGANO et al., 2023b).

Context refers to any information that can be used to characterise an entity’s situation
(ZIMMERMANN; LORENZ; OPPERMANN, 2007). The context examines the entity in
a given scenario, where the place and time drive the construction of relationships and
enable the exchange of information between them (ZIMMERMANN; LORENZ; OPPER-
MANN, 2007). In this work, context is defined as a combination of model, data, and
fairness metrics. Most bias and unfairness solutions are particular to a single problem
or situation, not indicating a method capable of being applied to every context (ADEL
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et al., 2019; PAVIGLIANITI; PASERO, 2020; SHI et al., 2020; QUADRIANTO; SHAR-
MANSKA, 2017).

There are several metrics for detecting bias and unfairness — functions defined on key
model results, such as rates of true and false positives, false omission ratio (FOR), and pos-
itive prediction ratio (PPR). There are more than 70 different fairness metrics (PAGANO
et al., 2023a; MAJUMDER et al., 2023; SMITH; BEATTIE; CRAMER, 2023; CASTEL-
NOVO et al., 2022), each exploring and exposing different aspects of bias and unfairness.
There is also a lack of accepted standards or shared practice knowledge (SMITH; BEAT-
TIE; CRAMER, 2023), yet new metrics may be proposed to tackle specific challenges.
Testing all different fairness metrics and concepts is a time-consuming and difficult task
that discourages ML practitioners from properly evaluating their models, resulting in ei-
ther a model without concern for injustice or a poorly evaluated model with no clear
fairness objective, tested with suboptimal metrics. Furthermore, exhaustively testing a
model with all available fairness metrics spends a substantial computational cost, reducing
the sustainability of ML model training by increasing the carbon footprint. The variety
of fairness metrics demands significant expertise with algorithmic unfairness when eval-
uating a model (NIELSEN, 2020), resulting in a growing gap between researchers and
practitioners (SMITH; BEATTIE; CRAMER, 2023).

There is also the impossibility theorem, which states that the calibration of unfairness in
a group and the simultaneous balance of positive and negative classes are only possible
in two simplified cases: 1) a classifier with perfect prediction, and 2) when the distri-
bution of groups is equal and all predictions of the classifier are equal (KLEINBERG;
MULLAINATHAN; RAGHAVAN, 2016). Additionally, there is no solution for building
systems that are fair across multiple metrics, making it even more difficult for developers
to evaluate model performance. As a result, narrowing the metric space is desirable.

Consequently, determining a representative metric from a set of metrics remains an open
research question (PAGANO et al., 2023a). All due to the wide variety of metrics available
and their reliance on the issue at hand. This identification is advantageous, as it could
pave the way for the design of systems to help developers and practitioners better control
over unfairness in their software (PAGANO et al., 2023b). Furthermore, identifying a
representative set of metrics would empower ML practitioners to effectively evaluate their
models, making the process more feasible and contributing to reduced carbon emissions
by minimizing the need for exhaustive testing with all available metrics.
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1.1 Problem definition

Each fairness metric has a different goal for bias identification, so when analysing a variety
of metrics, different bias aspects appears, including contrasting results (BALAYN; LOFI;
HOUBEN, 2021). There are limitations to build a fair system considering a broad number
of metrics, which includes the selections of an appropriated metric to evaluate and make
model selection decisions. Therefore, striving towards selecting a representative metric is
ideal as it would reduce the metric space and facilitate the identification and mitigation
of bias and unfairness aspects.

1.2 Research questions and assumptions

Given the critical issue of assessing unfairness in ML models and the large number of
metrics, this study focuses on the following research question:

How to reduce the fairness metrics scope for a problem, maintaining their representative-
ness, and supporting identification and mitigation of bias and unfairness in a model?

To address this research question, the following assumptions are proposed:

1. Fairness metrics may have similar behaviour within the same context.

2. Fairness metrics, with similar behaviour, can be grouped and replaced, by a repre-
sentative metric of the group, in a given context.

3. The use of a representative metric has a similar effect as using the represented ones
to analyse bias and unfairness in a model.

1.3 Objective

The overarching objective of this work is to propose a computational method that allows
the selection of the most representative metrics for bias and unfairness assessment in
post-processing for binary classification machine learning models in different contexts.

To achieve this overarching goal, the specific objectives are to:

1. Analyse and select state-of-the-art metrics used for bias and unfairness identification
in ML models.
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2. Analyse cases studies in different contexts with relevant bias and unfairness phe-
nomena.

3. Develop a correlation-based algorithm that performs the grouping and selection of
the representative fairness metrics.

4. Analyse the performance of the developed algorithm for identifying bias and unfair-
ness through the selected representative metric for different cases studies in different
contexts

1.4 Significance of the research

This study significance lies on the fact that it elaborates on the use of correlation as
a heuristic for fairness metric selection, highlighting important caveats, and providing
a study on the efficiency of this approach by revisiting ideas from previous empirical
research. The contributions are understood as follows:

• Ideas about using correlation as a heuristic tool for finding a representative fairness
metric for a context (data + model) were confronted and improved;

• The required computational power needed to find the representative metrics was
reduced by adding a stopping criterion;

• Experimental results demonstrating the effectiveness of the mentioned approach in
different application domains are provided.

Moreover, it serves as tool to facilitate unfairness assessment in the model development
process, addressing sustainability by fostering the development of more socially sustain-
able and trustworthy AI solutions that can help achieve UN’s SDGs. Finally, having an
efficient metric selection algorithm is crucial, because as the models become more complex,
re-training can be expensive in terms of money, effort, and carbon footprint.

1.5 Limits and limitations

As scope limitation, we have the following:

1. Identification of bias and unfairness will only be done with post-processing ap-
proaches.
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2. The ML models are treated as black boxes.

3. Simple and faster to train models will be used.

4. Only a select group of bias and fairness metrics will be used.

Limitations 1 does not consider different approaches identifying bias and unfairness in
other steps of ML models development, like data-preprocessing or the training loop, which
has its own set of challenges, it also guarantees that the developed method can be used
without modifying the already existing training pipelines. Limitation 2 ensures that no
model modification, such as hyper-parametrization or architectural changes, will occur,
facilitating the model unfairness evaluation without the need to understand the targeted
model intricacies. Limitations 3 and 4 are placed to guarantee that the research focus
stays on develop and validate the methodology, with a feasible amount of variables to
analyse.

1.6 Organisation of the Master’s Dissertation

This document has 5 chapters and is structured as follows:

• Chapter 1 - Introduction: It contextualises the scope in which the proposed
research is inserted.It therefore presents the definition of the problem, the objectives
and justifications of the research and how this master’s qualifying dissertation is
structured;

• Chapter 2 -Literature Review: It describes ML ideas, bias and unfairness stud-
ies, that were used in this work. It also includes other researches that constitute the
state of the art in determining a representative fairness metric.

• Chapter 3 - Material and Methods: This section describes the materials and
methods used in master’s qualifying dissertation. Materials include datasets, models,
and fairness metrics, in addition to methods including bootstrap sampling, metric
correlation, and stopping criteria. Used to choose representative fairness metrics
and evaluate the experiments.

• Chapter 4 - Results and Discussions: This section gives the outcomes of the
experiment using the proposed method and compares them to the base method.

• Chapter 5 - Final considerations: This section includes conclusions, contribu-
tions and suggestions for future research activities.
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Literature review

This chapter is divided into two sections: section 2.1 provides a comprehensive explana-
tion of the theoretical aspects essential for understanding the elements presented in this
dissertation, and section 2.2 reviews the current state-of-the-art for the research topic.

2.1 Theoretical background

2.1.1 Machine Learning Models

ML is a requirement for artificial intelligence, as a system in an ever-evolving environment
should be able to learn, avoiding committing the same mistakes over and over again. In
that sense, ML can be defined as a field of study that gives computers the ability to
learn without being explicitly programmed (ALPAYDIN, 2021; MAHESH, 2020). This
field is a junction of computer science, statistics, and a variety of disciplines focused on
automatic improvement over time and decision-making in uncertain situations (JORDAN;
MITCHELL, 2015).

ML uses many algorithms to solve issues by learning from previously collected data. There
is not an absolute algorithm that is best for solving every kind of problem; the utilised
approach is dependent on the problem, the data, the amount of variables, and several
others complex characteristics. (MAHESH, 2020).

These algorithms can be categorised as either supervised or unsupervised. The former
involves working with labelled input data to enable the classification of fresh unlabelled
data. It is required to have one set of data for training and another for testing. The
distinction between both is the absence of annotations for the test data, enabling the
algorithm to obtain classifications from the training data. Unsupervised learning uses
unlabelled data and organises it based on similarity patterns (ZHANG, 2020).

Classification algorithms attempt to predict the class of incoming data by learning about
comparable data from previous observations. They are typically a subset of supervised
learning algorithms, with the purpose of predicting the category of a new set of data.
This work will use five supervised classification algorithms: multilayer-perceptron neural
network (MLP), logistic regression (Logit), k-nearest neighbours (KNN), c-support vector
machine (SVC) and random forest classifier (RF).
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2.1.1.1 Multilayer-Perceptron Neural Network (MLP)

The multilayer perceptron is a popular type of neural network. Signals are transported in
one direction from input to output utilising nodes or neurons in a feedforward architecture.
The network typically is organised into layers, starting with the input layer, where data is
introduced, followed by hidden layers where computations are performed, and ultimately,
the output layer, where the final decision is made, as shown in Figure 2.1.

Input
layer

Hidden
layers

Output
layer

Figure 2.1: MLP typical architecture, representing the input, hidden, and output layers. Adapted
from (TAUD; MAS, 2018).

The neuron makes decisions in the shape of a semi-plane, but by connecting it to another
neuron, another semi-plane is added to the first, resulting in convex decision areas that
enable complex solutions. The intensity of association between two neurons is defined by
a weighted connection (wi), which follows Equation 2.1 for the input (Xi) and output (Y),
where m represents the number of inputs and weights. Another important component
is the bias (b), which is a constant input to a neuron that is not associated with other
neurons, and the activation function, which applies a function over the weighted sum of
the neuron inputs to control the output, introducing nonlinearity into the network and
allowing it to learn complex patterns in the data. Typical functions include sigmoid in
Equation 2.2, hyperbolic tangent function (tanh) in Equation 2.3, Rectified Linear Unit
(ReLU) in Equation 2.4, and softmax in Equation 2.5 (POPESCU et al., 2009).

y = f

(
m∑
i=1

wiXi + b

)
(2.1)

sigmoid(X) =
1

1 + e−X
(2.2)
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tanh(X) =
eX − e−X

eX + e−X
(2.3)

ReLU(X) = max(0,X) (2.4)

softmax(Xi) =
eXi∑
j e

Xj
(2.5)

Feedforward propagation and backpropagation are strategies for training neural networks.
During feedforward propagation, input data is sent through the network layer by layer,
with each layer conducting a computation based on the inputs it receives and passing
the results on to the next layer. At the end, an error signal is generated. During back-
propagation, the MLP adjusts network weights using a gradient descending minimization
procedure, as shown in Equation 2.6, based on the error signal. η is the learning rate,
which determines the step size for the weight update; J denotes the loss function, which
measures the difference between the predicted output and the actual target; and ∂J

∂w(l)

is the gradient of the loss function, indicating how J changes as wi changes (KARLIK;
OLGAC, 2011). This process iteratively adjusts the weights to minimise the loss function,
thus improving the performance of the MLP.

wi = wi − η
∂J

∂wi

(2.6)

2.1.1.2 Linear Regression and Logistic Regression (Logit)

A linear regression formalises a statistical relationship between two variables, indicating
that Y is linearly connected to X. X is the input feature, and Y is the predicted outcome.
The first step in a regression is to plot the data in a plane, as shown in Figure 2.2, with the
X on the horizontal axis and the Y on the vertical axis, to approximate a linear relation
between the two, defined by Equation 2.7, where b is a bias and w is a weight (HILBE,
2009). The bias represents where the line intersects with Y, whereas the weight represents
the curve’s slope.

Y = b+ wX (2.7)
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b + wx

Y

X
0 20 40 60

40

60

20

Figure 2.2: Estimated line from the linear regression of Y on X. Adapted from (AMBROSIUS,
2007).

Linear regression is useful for data with a linear connection that can be represented by
first-order approximations; however, its application is limited, thus linear regression is not
appropriate. Furthermore, linear regression with a continuous or binary outcome between
0 and 1 may not be ideal. Alternatively, logistic models can be used (KOMAREK, 2004).
A Logit model describes the connection between a qualitative dependent variable and an
independent variable. In general, a logistic regression model derives the class membership
probability for one of the data set’s two categories by applying the sigmoid function to a
linear combination of input features. Logit uses Equation 2.8 and a representation can be
seen in Figure 2.3 (HILBE, 2009; DREISEITL; OHNO-MACHADO, 2002; KOMAREK,
2004; CAMDEVIREN et al., 2007).

P (Y = 1 | x) = sigmoid(w ∗ X+ b) (2.8)

Where the sigmoid function is defined in Equation 2.2, and P (y = 1 | X) represents the
probability that the output y is 1 (positive class) given the input X, and ∗ denotes a dot
product operation.
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Sigmoid(x) x

X

Y

Threshold
Value

Figure 2.3: Estimated line from the Logit for a binary classification. Adapted from (KIRASICH;
SMITH; SADLER, 2018).

2.1.1.3 K-Nearest Neighbours (KNN)

The KNN algorithm is a simple supervised machine learning technique that can be applied
to classification tasks. Although simple to develop and understand, this method has a
major drawback as it becomes slower as the data size grows (POPESCU et al., 2009). This
algorithm classifies data directly, memorising the whole training dataset, and the model’s
only configurable parameter is the number of nearest neighbours to incorporate for class
membership estimation. By changing k, the model can become more or less flexible. To
classify a new data point, the algorithm computes the distance between the new point and
all the other points in the training dataset, then selects the k nearest points and assigns
the most prevalent classification in those points as a label to the new point (DREISEITL;
OHNO-MACHADO, 2002). This method is shown in Figure 2.4.

2.1.1.4 C-Support Vector Machine (SVC)

SVCs are supervised learning models that perform both linear and nonlinear classification
by implicitly mapping their inputs into high-dimensional feature spaces. The SVC utilises
a’maximum-margin hyperplane’ as a decision boundary to separate two different classes,
defined as the ideal hyperplane that yields the maximum margin between the two classes,
as depicted in Figure 2.5 for a linear case (JIANG; YAO, 2016). In general, a wider margin
indicates less classification error. This approach replaces dot products with nonlinear
kernel functions to match the maximum-margin hyperplane and wrap around features
that are not linearly separable (NOVAKOVIC; VELJOVIC, 2011). SVC uses the decision
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X1

X2

New point
Class A
Class B

2
1 =

Figure 2.4: Decision process for a KNN, using three nearest neighbours (k) in a binary problem.
Adapted from (GUO et al., 2003).

function in equation 2.9, where x is the input features, alphai are Lagrange multipliers
used to calculate the optimisation problem of maximising the margin, y are the labels, b
is the bias, and Ke(Xi,x) is the kernel function.

X1

X2

Hyperplane
Margin
Class A
Class B

Figure 2.5: SVC hyperplane for a linearly separated scenario with two features. Adapted from
(JIANG; YAO, 2016).

f(X) =
n∑

i=1

αiyiKe(Xi,X) + b (2.9)

The Radial Basis Function (RBF) kernel, used in this study, non-linearly maps objects
into a higher-dimensional space and requires a smaller number of hyperparameters to
train, alleviating the complexity of model selection (RAHMAWATI; HUANG, 2016). The
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RBF is calculated using Equation 2.10, where σ is a parameter that regulates the width
of the Gaussian function.

Ke(Xi,X) = e

(
− ∥Xi−X∥2

2σ2

)
(2.10)

2.1.1.5 Random Forest Classifier (RF)

The decision tree classifier is the basis for the RF, which is a supervised learning method
used for classification tasks. It works by recursively splitting the data space into subsets
based on feature values, resulting in a tree-like model with simple decision rules inferred
from the data features to predict the target classification.

RF is made up of a collection of tree-style classifiers, each of which is constructed by
randomly sampling input features with identical distributions. Each tree independently
casts a unit vote for the output, and the output with more votes is picked, resulting in
an ensemble of decision trees to increase prediction performance, as shown in Figure 2.6.
Equation 2.11 illustrates the technique, where ht(X) is the prediction of the t-th tree and
T is the total number of trees in the forest (PAL, 2005; KULKARNI; SINHA, 2013).

X

BA A

Majority Voting

A

Tree1 Tree2 Tree3

Figure 2.6: RF model representation of the voting system using three tree classifiers, with or-
ange nodes representing the selected path for each tree. Adapted from (KIRASICH; SMITH;
SADLER, 2018).

f(X) =
n∑

i=1

αiyiK(Xi,X) + b (2.11)
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2.1.2 Bias and unfairness in ML

Automated decisions can have an enormous impact in one’s life. Whether consider-
ing school admittance, a job offer, or even a mortgage, arbitrary, inconsistent, or erro-
neous decision-making can adversely limit access to deserved opportunities (BAROCAS;
HARDT; NARAYANAN, 2023).

Identifying essential characteristics for a decision might occur informally or unintentionally
by associating specific features to improved performance based on prior knowledge. For
example, an employer may see that those who study mathematics do better in financial
occupations. ML analyses historical data to identify significant decision-making aspects
that people may ignore, resulting in more complex relationships between observed data
and outcomes (BAROCAS; HARDT; NARAYANAN, 2023; van Giffen; HERHAUSEN;
FAHSE, 2022).

Even while ML achieved success in different areas of application, such as object recog-
nition, where humans are unable to provide the whole set of rules to fulfil the goal,
systematic biases were uncovered in several commercial ML models after they were put
into use (MITCHELL et al., 2019). Examples include computer vision (PERERA, 2024),
attribute detection (BUOLAMWINI; GEBRU, 2018), criminal justice (TRAVAINI et al.,
2022), and toxic comment detection (PAGANO et al., 2023b). The problem originates
from the fundamental manner that ML models learn by example, which involves general-
ising from many inputs rather than committing examples to memory. Learning patterns,
details, and features to accomplish the required task on data samples similar, but never
seen before (BAROCAS; HARDT; NARAYANAN, 2023).

These issues highlight the need of having a sufficient number of instances, a diverse
set of examples, and a sufficiently well-annotated set of examples. These are required
to train accurate, trustworthy, and fair ML models, but such data is rarely available
and are costly to acquire (HE et al., 2022; BAROCAS; HARDT; NARAYANAN, 2023;
KILKENNY; ROBINSON, 2018; GEIGER et al., 2020). When utilising machine learning
to predict human conduct and traits, the unfairness problem is underlined since the his-
torical examples presented will most often represent past prejudices against specific social
groups, dominant cultural stereotypes, and demographic inequalities. As a result, the ML
model will mimic the same dynamics identified in data patterns (BAROCAS; HARDT;
NARAYANAN, 2023; LESLIE et al., 2023; BOOTH et al., 2021).

Fairness is a social term that is based on value judgements, hence there is no standardised
definition. Fairness is a subjective appraisal that differs between cultures and societies
(BOOTH et al., 2021). Consensus on a universal definition of fairness is a challenge in
AI ethics and governance. It must be treated as a contextual and multivalent concept,

13



Chapter Two 2.1.2 Bias and unfairness in ML

manifesting from a diversity of factors, such as social, technical, sociotechnical, legislation,
societal traditions, and ethical commitments, among others (LESLIE et al., 2023; JONES
et al., 2020). To provide a quantitative approach to ML unfairness, the literature usually
uses two broader definitions:

• Group unfairness.

• Individual unfairness.

For group unfairness, statistical metrics are employed to compare two separate groups
based on different protected attributes. A protected attribute is any information that
cannot be used to justify disparities in model results. In other words, a feature for which
the model cannot be biassed. Protected attributes, often known as sensitive attributes,
includes race, gender, religion, national origin, citizenship, pregnancy, disability status,
genetic information, and many more characteristics. Each ML model has a set of protected
attributes based on the application context (CASTELNOVO et al., 2022; KIM et al., 2021;
PAGANO et al., 2023a). Hiding the protected attribute from the model is insufficient to
ensure fairness, as the data may contain proxy variables for those attributes. For example,
credit insurers may use credit information to price the insurance, leading to unintentional
proxy discrimination against low-income or minority groups (PRINCE; SCHWARCZ,
2019).

Individual unfairness focuses on ensuring fairness at the individual level. Ensuring that
people with comparable relevant qualifications have comparable system outcomes. To
demonstrate how similar two people are in regard to a particular task, this method requires
a similarity metric (LESLIE et al., 2023; CASTELNOVO et al., 2022; CHEN et al., 2023).
Although the idea of individual unfairness is more powerful than that of group unfairness,
both concepts often originate from the same fundamental principle: that people who
are similar should be treated similarly (KLEINBERG; MULLAINATHAN; RAGHAVAN,
2016). However, individual unfairness cannot be applied when the objective is to address
biases in the data; rather, it has relevance only when discrimination occurs during the
decision-making process. On the other hand, group unfairness is quantifiable in a variety
of ways and is dependent on the outcome statistics for the subgroups which are indexed
in the data, allowing for the correction of data bias (PAGANO et al., 2023a).

Counterfactual unfairness is a variety of individual unfairness that characterises a result
as fair if a choice made about a member of a sensitive group would have been the same
if the member of the group had come from a different group in an alternate world. By
incorporating causality into the analysis, it becomes transparent which elements affect
the result (LESLIE et al., 2023). Because a change in a sensitive attribute could result
in an unrealistic sample, the main disadvantage of this technique is the requirement
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to understand the causal linkages and relationships among the variables underlying the
problem. For example, a male with the gender label reversed can have unrealistic (or less
probable) features, such as height or hair length, therefore a change in these two variables
with a specific probability is also required. It may be feasible if the number of relevant
variables is small and the phenomenon is well understood, which is unlikely in complex
social settings (CASTELNOVO et al., 2022).

2.1.2.1 Types of bias

Bias and unfairness are related concepts, nevertheless, they are distinct topics in machine
learning. Bias occurs as a consequence of an unintentional error or systematic deviation in
a system, and is not always a negative thing. Unfairness refers to the systematic prejudice
or unequal treatment of individuals or groups (BOOTH et al., 2021; FERRARA, 2024).
Both terms can be used together as bias and unfairness to express the biases that result
in unequal or prejudicial treatment of individuals or groups.

Bias in an ML model’s lifecycle can arrive from multiple places and exist in many forms.
Two complementary views are the biases arising from the interactions of data, users,
and algorithms (models) (MEHRABI et al., 2021), and the other view sees bias as four
different and generalist groups defined as world, data, design, and ecosystem (LESLIE et
al., 2023). Both representations are correct and exhibit comparable types of bias. Only
the most pertinent bias types will be discussed here because there is a wide range of bias
types and this study does not focus on redefining or proposing new types. It’s also critical
to remember that, because bias is ingrained in all machine learning models, bias is not
equal to injustice. A model is considered unfair when there is bias towards a protected
attribute.

Historical bias: already existing bias in the real world, normally in the form of social
patterns of discrimination, social injustice, and discriminatory attitudes. The model
propagates those historical biases that are present in the dataset.

Structural and institutional bias: is a type of discrimination that exists within an organi-
sation and is brought about by the laws, guidelines, policies, and practices of a government
or agency.

Temporal bias: show how cultures evolve over time due to variations in population and
conduct; these variations may result in the favouring of one temporal behaviour over
another.

Representation bias: associated with the demographic sample used in the data collection
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process. Minor details or subgroups that never make it into the dataset characterise non-
representative samples, lacking diversity. It can also be caused by any broad presumptions
regarding population groupings.

Selection bias: when bias develops as a result of the selection procedure used during the
creation of the model or data. The selection process could involve the following: the study
subjects choosing their own candidates; an inadequate model to address the issue; or an
ambiguous label (target) choice.

Measurement bias: discusses the option for measuring or reporting the features that the
model uses. It appears when the concepts being measured are not fairly and equally
represented by the measuring criteria.

Emergent bias: occurs as a result of use and interaction with real users. This bias arises as
a result of changes in population, cultural values, or societal knowledge. It’s common in
systems with user feedback, where complex interactions between the system, its users, and
the environment often manifest due to unforeseen dynamics that occur post-deployment.

2.1.2.2 Protected Attributes

Protected attributes are demographic or personal features of individuals that cannot be
used to make a decision. The protected attribute could be defined and protected as part of
a legal mandates or because of organizational values. These attributes include, but are not
limited to, race, religion, national origin, gender, marital status, age, disability status, and
socioeconomic status. Ensuring fairness in algorithmic decision-making requires careful
consideration of these attributes to prevent models from perpetuating or exacerbating
existing disparities (BAROCAS; HARDT; NARAYANAN, 2023).

In many jurisdictions, the use of sensitive attributes in decision-making processes is heavily
regulated. Including regulations and laws as: Penalties for discriminating in housing
(U.S. Congress, 1968), Convention against discrimination in education (United Nations
Educational, Scientific and Cultural Organization (UNESCO), 1960), Convention on the
Elimination of All Forms of Racial Discrimination (United Nations General Assembly,
1965), Convention on the Elimination of All Forms of Discrimination against Women
(United Nations General Assembly, 1979), and Convention on the Rights of Persons with
Disabilities (United Nations General Assembly, 2006).

Furthermore, discrimination against members of a protected group could happen indi-
rectly, when persons appear to be treated indifferently to the protected attributes but
are still treated unfairly as a result of implicit protected attributes. For example, using a
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person’s residential postcode can result in racial discrimination because the population of
residential regions may be correlated with race. These indirect variables are also known
as proxy variables (MEHRABI et al., 2021).

2.1.2.3 Concerns involving bias and unfairness

Different concerns concerning bias and unfairness in ML models have been raised in a
variety of studies. Issues include a lack of transparency, explainability, regulation, and
accountability. All those concerns are included in the broader concept of trustworthy
AI, which can be defined as a set of overlapping properties: reliability, safety, security,
privacy, availability, usability, accuracy, robustness, fairness, accountability, transparency,
interpretability, explainability, and ethics. These properties apply to all stages of an AI
system’s life cycle. Improving trustworthiness in any one aspect demands improvements
at several stages, while a violation of trust in any single property might damage the overall
trustworthiness of the system. (LI et al., 2023; WING, 2021; LIANG et al., 2022).

Transparency and explainability in ML models is exceedingly difficult to achieve because
the models contain millions of parameters with no clear indication of which parameter is
responsible for the final result. The problem is exposed when huge organisations, such as
Meta and Telegram, are not committed to publishing how the employed systems operate
and what the constraints are. The models can only be studied by the team that produced
them (AMMAR, 2019).

Transparency is defined as a combination of process and result transparency, referring
to disclosing information regarding the model entire lifecycle, while explainability which
refers to understanding the algorithm’s basic characteristics as well as the judgements
and patterns that led to the final categorization process. Local explanation can identify
the most essential features for a specific decision, whereas global explanation assesses all
decisions based on specific metrics (SEYMOUR, 2018; LI et al., 2023).

Models can be classified as white-box or black-box, depending on their availability and
constraints:

• White-box: ML models produce straightforward results for application domain ex-
pertise. Typically, these models achieve an appropriate mix between accuracy and
explainability. The structure and functionality of this model category are simple to
change and analyse (LOYOLA-GONZALEZ, 2019).

• Black-box: ML models that are incredibly difficult for experts in the field to describe
and understand. Changes to the structure of models in this category are limited,
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making it difficult to grasp their structure and operation (LOYOLA-GONZALEZ,
2019).

There is still no clear and globally accepted definition of responsibility for AI systems,
but it should include: fairness, safety, privacy, explainability, security, and reproducibility
(NOIA et al., 2022).

To address security concerns in automated decision systems, data engineers are urged
to develop a more fair and inclusive procedure. Automated decision systems must be
responsible in development, design, application, and use, as well as strictly regulated
and monitored to avoid perpetuating inequality (STOYANOVICH; HOWE; JAGADISH,
2020). The regulation should emphasise an obligation to minimise the risk of erroneous
or biassed decisions in critical areas (NOIA et al., 2022).

Accountability addresses the regulation on AI systems improving legal and institutional
norms on AI governance, requiring that the stakeholders of an AI system to be obligated
to justify their design, implementation, and results. It could also require the auditability
of systems, requires the justification of a system to be reviewed, assessed, and audited by
a third party (LI et al., 2023).

Opposition to the use of models for decision-making emphasises the existence of advan-
tages and disadvantages. Implementation of these tools can introduce new uncertainties,
disruptions, and risks to already critical scenarios, such as strategic governance, with
concern about ethical aspects (DWIVEDI et al., 2021; BOOTH et al., 2021; KÖNIG;
WENZELBURGER, 2021).

Governments are experimenting with ML to boost efficiency in large-scale personalisation
of services based on citizen profiles, such as predicting viral outbreaks, crime hotspots,
and food safety inspections (DWIVEDI et al., 2021). Bias can produce governance chal-
lenges in those circumstances, endangering society and sustaining previous prejudice and
unwanted habits. The discussion should include technology diplomacy as a facilitator of
global policy alignment and governance (FEIJÓO et al., 2020). Finally, bias in ML sys-
tems can be regarded as a censoring act because the algorithms usually neglect unusual
information; for example, religious content is censored as an unintentional consequence of
counterterrorism models (AMMAR, 2019).
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2.2 Literature review

Few works try to select representative fairness metrics, or to reduce the number of metrics
to evaluate a model.

Correlation between metrics was used in a word embedding application to evaluate and
compare fairness metrics, in the proposed Word Embeddings Fairness Evaluation (WEFE)
framework. Using pre-trained word embedding models, WEFE calculates an unfairness-
based ranking of these models by encapsulating existing fairness metrics. After ranking
the metrics in different models and sensitive attributes, the correlation between rankings
is used, and similarities are shown only for the gender attribute. As a result, the correla-
tion is substantially weaker when we consider ethnicity and religion bias, indicating that
more work is needed to propose fairness metrics able to consistently rank embeddings
for dimensions beyond gender (BADILLA; BRAVO-MARQUEZ; PéREZ, 2020). Further-
more, the application does not provide a method for selecting a representative metric,
and only four fairness metrics associated with the word embedding context are employed.

A decision-tree style framework for choosing fairness metrics relevant to recommendation
and ranking systems was used to assist in the decision-making process of choosing the
appropriate metric within a certain context. The framework is a decision-making struc-
ture that is specifically intended to scope measurable harms and corresponding metrics
from a predefined potential harm to the system. To develop the framework, capturing
the complex challenges practitioners face when scoping and identifying fairness metrics,
a series of interview and literature reviews were conducted, using the decision tree to
correspond fairness metrics to the possible harms that could emerge from a conceptual
system (SMITH; BEATTIE; CRAMER, 2023). This strategy relies solely on the litera-
ture regarding the validation of the chosen metrics through interviews and is restricted to
selecting a single metric through a series of questions concerning the problem’s unfairness,
based on the user’s knowledge about the system.

The analyses of the relationship between sensitive attributes and fairness metrics is ex-
plored by evaluating models in three different application areas using the same sensitive
attribute. Namely, a computer vision, natural language processing, and recommendation
systems were trained and evaluated to the gender attribute. It used a facial recognition
detection, message toxicity detection, and movies recommendations cases studies. Most
of the fairness metrics had the same behaviour in all models, only two metrics expressed
a different measurement between the cases studies. The results reveal that, regardless
of the model, the sensitive attribute predicts a similar behaviour for the metrics, with
the sensitive attribute serving as an indicator of the measure to be employed (PAGANO
et al., 2023b). The analyses lack testing with different sensitive attributes, and needs
uniformity in the classes for the sensitive attribute, since one of the datasets, in addition
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to the male and female groups, also had transgender and other genders.

Another strategy attempts to group the metrics together for every possible scenario, using
a threshold to transform unfairness in a binary problem, calculating the dissimilarity
between them using a hierarchical clustering technique. In experiments with 26 metrics
in 4 datasets, they aim to analyse if the fairness metrics agree with each other, if they can
be grouped, how sensitive to change they are, and if it’s possible to achieve fairness in all
of them at the same time. Proposing a framework to run metrics on real-world data, find
clusters of correlated metrics and prune insensitive clusters. Agglomerative clustering is
used across all the data to grouped together pairs of metrics, creating a dendrogram of the
between-cluster dissimilarity. The finding showed that the metrics disagree when labelling
a model as fair or unfair, metrics can be clustered together based on how they measure
bias, clusters could be ignored when changes to the data did not change the unfairness
scores, and it is not possible to satisfy all the clusters (MAJUMDER et al., 2023). This
approach has potential drawbacks when applied to other areas, since it overlooks the
context created by the interaction of data, model and fairness metrics.

Some ideas for aggregating the metrics into representative groups rely on similarities
calculated using correlation, where a low variance estimator is used to group tightly related
metrics under model and data dependencies. A framework to identify a small subset of
fairness metrics that are representative of the broader set is proposed, using correlation-
Based Selection of metrics, through a Monte-Carlo Sampling algorithm, responsible to
estimate the fairness metrics in a sampled ML model (ANAHIDEH; NEZAMI; ASUDEH,
2021). Although this approach is relatively straightforward, there are lots of caveats,
which include the inability to capture fine-grained aspects such as confounding (SU et al.,
2022). This work improves over this approach, providing a solution for the caveats, with
a more reliable validation and a more efficient method.
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Material and Methods

Compiling with specific objective 1, this work focus on group unfairness, a broad type
of unfairness that is measured via the distribution of a model outcome over different,
often dichotomous, groups of interest (CATON; HAAS, 2024). In this context, for a
classification problem with a dataset of N observations, (X, S,Y), defined via a model h
mapping (X, S) → Y, we have that X is the set of non-sensitive independent variables1;
S is the set of sensitive ones, and Y, in turn, is the set of dependent (target) variables.
The set S acts as the conceptual enabler for obtaining a measure of unfairness across the
groups. For simplicity, assuming a dichotomous property of a single sensitive variable
S ∈ S, i.e., S ∈ {0, 1}, the data can be divided into Privileged (S = 1) and Unprivileged
(S = 0) sensitive groups (e.g., gender = {male, female}). For each such group s, a metric
f j
s is chosen from a set F = {fi}Mi=1 of M fairness metrics.

A common structure across metrics, particularly non-causal ones, is the strong reliance
on misclassification rates such as True Positive (TP), False Negative (FN), False Positive
(FP), and True Negative (TN) — all elements of a confusion matrix diagnostic common,
but not limited to, binary classification settings. The rates are then combined to produce
informative diagnostics of the model h tendency towards the sensitive groups (PAGANO
et al., 2023a). For example, a notion of positive outcome parity can be achieved when
equating the rates w.r.t of the total group observations NS=0 and NS=1:

TPS=1 + FPS=1

NS=1

=
TPS=0 + FPS=0

NS=0

(3.1)

Special combinations of the error rates give rise to different unfairness perspectives (Ta-
ble 3.2). We acknowledge that dataset properties (sampling scheme, organic relationship
of entities being modelled, etc.) and the choice of model (affected by the model’s induc-
tive bias) are key factors impacting unfairness. Therefore, in our analysis, following the
prior report (ANAHIDEH; NEZAMI; ASUDEH, 2021), we rely on the concept of context,
which is the environment specified by at least three components: (a) the available data,
(b) the standing notion of data generation mechanisms, and (c) the model type under
use.

Deciding which metric should be used in a problem requires thoughtful considerations and
often the support of practitioners with deep experience in algorithmic unfairness, which
may be a rare skill. Next, we detail a basic correlation-based strategy, from which we

1Variables are often referred to as attributes in the unfairness literature.
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provide further development.

We investigate the usefulness of choosing a representative subset of fairness metrics based
on similarities measured via correlation in a given context (model + data). Formally, for
a set of fairness metrics F, one wants to find a representative subset RF of much lower
cardinality, i.e. |RF| << |F|. High correlation is the element bounding the metrics in the
two sets. That is, ∀fi ∈ F, there exists a fairness metric fj ∈ RF such that the correlation
between fi and fj is high (ANAHIDEH; NEZAMI; ASUDEH, 2021).

3.1 Base Experiment

Next, we describe a base approach for selecting a subset of representative metrics through
sampling and correlation, highlighting the potential problems with the approach.

3.1.1 Bootstrap sampling via Markov chain Monte Carlo (MCMC)

Correlation is a common idea for modelling the relationship between different metrics.
In (ANAHIDEH; NEZAMI; ASUDEH, 2021), the authors propose a simple sampling
strategy to estimate the correlation between the metrics in F. The idea anchors on the
ability to sample different model performances for the same dataset and, ultimately, from
such performances, on the computation of aggregated values of each fi ∈ F under consid-
eration. The estimation process takes place following the well-known Pearson Correlation
Coefficient :

rij =

∑K
k=1(f

s
i,k − f

s

i )(f
s
j,k − f j)∑K

k=1(f
s
i,k − f

s

i )
2
∑K

k=1(f
s
j,k − f j)

2
(3.2)

Where the sampling process samples N classifiers instances hk for k ∈ {1, ..., N}, from
which fairness metric i values, fi,k, are calculated for each classifier hk.

For obtaining robust estimation, the authors repeat the computation in (3.2) L times
(L = 30), producing rℓi,j results. The final correlation estimate is then averaged following
standard guarantees given by the central limit theorem:

r∗i,j =
1

L

L∑
ℓ=1

rℓi,j (3.3)
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The performance of a model for the different (un/privileged) groups depends on the
ratio of available samples (the class balance) and the distribution of their label values.
To tackle this factor and mitigate the effects stemming from the noise in the dataset, an
option taken by the authors was to consider training the models based on subsamples from
the dataset in a process similar to cross-validation. Specifically,(ANAHIDEH; NEZAMI;
ASUDEH, 2021) used bootstrapping sampling, a process similar to random sampling with
replacement. Assuming K to be the number of drawn bootstraps samples given a dataset
D. They aimed to construct smaller representative subsets of D for model training. For
a binary classification problem with two groups g1 and g2, a vector w = {w1, w2, w3, w4},
such that

∑4
1wi = 1, of the proportion of samples in each cell can be constructed. For

completeness, we recall the process as follows:

1. Draw a vector from w uniformly from w.

2. Bootstrap wi × K samples from the samples of D that belong to the cell i of the
table to form the bootstrapped dataset Bj.

3. Use the dataset Bj to train the sampled classifier hj.

4. Evaluate the model to compute the values fkj, for each fairness metric, fk ∈ F and
return the vector {fk1, ..., fkm}.

The computed fairness metric in the above step 4 is then used to compute the correlations
via Equations (3.2) and (3.3).

3.1.2 Base Experiment Caveats

In the base experiment, the fairness metrics are grouped by their Pearson’s correlation
using a computationally costly method, which triggers some considerations:

1. The base experiment generates different probabilities for each combination of sam-
ples at random and uniformly, which does not ensure that data group biases are
properly represented in the samples.

2. The computational efficiency of Monte Carlo methods is widely criticised for their
high computational cost (SHIELDS et al., 2015), so any reduction in the quantity
of models to be retrained is ideal.

3. Pearson’s correlation cannot be used with non-normal data (SNEDECOR; COCHRAN,
1980), so another coefficient must be used to calculate the correlation.
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4. More explicit tests to validate the experiment are needed to prove the relevance and
veracity of the results obtained.

The proposed solutions for caveats 1 to 3 are adopted in the proposed experiment, detailed
in the following section. Caveat 4 is tackled in Section 3.2.4.4.

3.2 Proposed Experiment

In this section, we describe our proposed approach for selecting a subset of representative
metrics, starting with the base experiment and modifying it to address the aforementioned
caveats, and compiling with specific objective 3.

3.2.1 Stratified Sample

Addressing the first correlation caveat in Section 3.1.2, we divided the dataset based
on their sensitive attribute (S) and the dependent (target) variables (Y), using stratified
sampling, to avoid problems with underrepresented minority classes and ensure credibility
for the used fairness metrics.

The stratified sampling technique divides the population into distinct groups, using fea-
tures that express the overall situation of each group. The dataset is then sampled pro-
portionally to the size of each group, having less variance than random sampling, since
samples within a group are more similar than samples from different ones (SHIELDS et
al., 2015; MOORE; NOTZ; NOTZ, 2006).

Stratified sampling has been effectively applied to classification problems involving minor-
ity and infrequent classes. For example, stratified sampling designs are used in land cover
classification map models to handle classes with little coverage (such as water and wet-
lands), lowering the margin of error for the area determined by pixel counting (PUERTAS;
BRENNING; MEZA, 2013). When categorising texts with imbalances, stratified sampling
is used to ensure that the features chosen in the subspace are more balanced and infor-
mative for both the minority and the majority classes. This improves the classification
performance of Random Forest models when compared to the random sampling version,
especially for minority classes with a very small number of instances (WU et al., 2014).

For extremely unbalanced datasets with few minority samples, the random sampling
method would result in a small, potentially zero, number of minority samples in the
test set, rendering the evaluation metric applied to it invalid. The stratified sampling
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method for splitting the data is used in order to preserve the imbalance ratio of the orig-
inal dataset in the test set. This increases the assessment metric’s trustworthiness and
prevents a situation in which it cannot be calculated from the test set (HU et al., 2022).

3.2.2 Stopping Criterion

Addressing the second correlation caveat in Section 3.1.2, we propose a stopping criterion
for the Monte Carlo method that reduces the amount of model training required to find
the representative metrics, thus reducing the computational cost.

The computational cost reduction matters because Monte Carlo is costly yet a reliable
and efficient method of assessing uncertainty in computer analysis. As a result, there
has been a great deal of interest in improving the effectiveness of Monte Carlo techniques
(SHIELDS et al., 2015). To mitigate the problem, it is necessary to improve the sample
routine’s convergence rate and determine when to terminate the MCMC algorithm (ROY,
2020; SHIELDS et al., 2015).

The proposed stopping criteria employ the median absolute deviation (MAD) metric,
which is a robust estimator for obtaining the standard deviation of a non-normal distri-
bution (ASLAM et al., 2019), shown in equation 3.4, where fi represents a metric value.
Given our experimental results in Chapter 4, there is no guarantee that the metrics will
follow a normal distribution; therefore, MAD is used as a non-parametric statistical met-
ric. The MAD of each fairness metric from the trained models reaches the early stopping
criteria when two conditions are met, stopping the model creation process. The first con-
dition is the maximum MAD threshold, achieved when the MAD of a fairness metric is
less than the defined threshold. The second condition is the minimum number of fairness
metrics that achieve the first condition. To determine the experiment thresholds, differ-
ent values were tested, and the pair with the highest mean correlation from a represented
metric to its representative was chosen, with the conditional that it did not stop on the
first or last model possible, as this is an indication that the threshold is too rigorous or
lenient.

To extrapolate the threshold values for different contexts, the selected values are a good
starting point, but they should be fine-tuned to the desired application while analysing
the mean correlation.

MAD =
1

n

n∑
i=1

|fi −median| (3.4)
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The stopping criteria are considered from the third iteration onward, where the MAD
metric presents a more stable behaviour.

3.2.3 Correlation Method

To address the third correlation caveat in section 3.1.2, we used Kendall’s tau correlation
to fill the Pearson’s correlation gaps shown in the previous subsection. This type of
coefficient is well-known for being recommended for non-normal data and small datasets
(CHOK, 2010). It is based on the rank of the data, allowing it to deal with non-linearity
(BRUCE; BRUCE, 2018). Kendall’s tau calculation is shown in Equation 3.5, where C

are concordant pairs and DI are discordant pairs, so τ will range between -1 and +1.

τ =
C −DI

n(n− 1)/2
(3.5)

3.2.4 Experiments Setup

Our experimental setup generates the experimental result using a pre-selected set of
datasets, models, and metrics, tackling the specific objectives 1 and 2, as well as four
approaches to validate different aspects of the chosen metrics, compiling with specific
objective 4.

3.2.4.1 Dataset

The results are based on the benchmark datasets commonly used for unfairness problems
(ANAHIDEH; NEZAMI; ASUDEH, 2021; MAJUMDER et al., 2023), involving four case
studies in the fields of criminal judgement, bank loans, demographic census, and advertise-
ment. The obtained data were pre-processed prior to the experiments, transforming the
values of each protected attribute into categorical numeric-type data. Figure 3.1 shows
the data distribution in each dataset used.

The Adult (DUA; GRAFF, 2017), also known as Census Income, has 48,842 total data
samples and attempts to predict whether annual income exceeds $50,000. Individual
information such as age, education, occupation, relationship, race, gender, capital gain,
and capital loss were extracted from the 1994 Census database. In this case, the target
attribute is income, and the protected attribute under consideration is race. Figure 3.1
depicts the distribution of groups in this dataset in terms of output classes.
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The Bank Marketing (DUA; GRAFF, 2017) contains data directly related to market cam-
paigns in phone calls from a Portuguese bank between 2008 and 2013 (MORO; CORTEZ;
RITA, 2014) and attempts to predict whether the customer has signed a term deposit.
This dataset contains 45,211 tuples with individual data such as age, job type, marital
status, education, and personal loan. The target attribute is y, a binary attribute describ-
ing if the client subscribed to a term deposit, and the sensitive attribute in analysis is
age cat. The distribution of the sensitive groups in this dataset in relation to the output
classes is depicted in 3.1.

The Compas was published by ProPublica and is a database that contains criminal and
demographic information, including criminal history, length of time in prison, gender,
age group, and race. Analysing a study by ProPublica the algorithm developed with this
database became biassed in favour of white defendants and against black defendants when
taking into account the two year recid attribute (LARSON et al., 2016). The distribution
of the sensitive groups in this dataset with respect to the output classes is depicted in 3.1

The German Credit Data (DUA; GRAFF, 2017) is a dataset designed to determine
whether a person has good or bad credit risk. This dataset contains 1000 tuples of
information gathered by the University of Hamburg, including personal information such
as age, job, credit history, loan purpose, marital status, and gender. The attributes risk
and sex are to be considered sensitive in analysis. Figure 3.1 shows how the sensitive
groups in this dataset are distributed in relation to the output classes.

All datasets have data imbalances and disparities, including sensitive attributes with fewer
data samples than others and samples with varying proportions of the target class. These
disparities represent inherent biases in the data and do not necessarily imply that the
data is unfair, as long as they accurately reflect the true context from which the data
originated. Nonetheless, these disparities should not be replicated by the ML models
trained on them.

3.2.4.2 Models

We experimented with five classifiers: MLP, Logit, SVC, KNN, RF.

The developed experiment is sensitive to several hyperparameters that are required for ex-
periment replication. For the model implementation, we used the popular scikit-learn
library (v1.1.1) (PEDREGOSA et al., 2011). Table 3.1 highlights the hyperparameters
used in the models; default parameters are used for the ones not described in it.
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Figure 3.1: Distribution of the sensitive groups in each dataset in relation to their target values.
The target values are: Adult: Income over or under $50000; Bank: signed or not the bank
deposit; Compas: Relapse or not into criminal behaviour in two years; German: Has a good or
bad credit risk score.

Table 3.1: Models parameters for each classifier

Logit RF SVC MLP KNN

solver=’liblinear’ max_depth=2
gamma=’auto’ hidden_layer_sizers=(15,)

n_neighbors=2warm_start=True

kernel=’rbf’ activation=’relu’
solver=’adam’

3.2.4.3 Metrics

Table 3.2 lists the fairness metrics used in the experiments, the list contains commonly
used fairness metrics, however, any metrics based on misclassification rates might be
adopted.

3.2.4.4 Validation

To address the fourth correlation caveat in Section 3.1.2, the experiments were validated
using the four criteria listed below:

1. Analysis of the number of models and subsets: The experiment was run for each
combination of datasets and classifiers, using both the base and proposed experi-
ment, for a total of 40 executions, with the upper bound for the number of models
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Table 3.2: Metrics used as unfairness criteria with the respective formulation.

Metric Formulation

Equalized Odds Values (HARDT;
PRICE; SREBRO, 2016)

1
2 ∗
(∣∣∣ FP0

FP0+TN0
− FP1

FP1+TN1

∣∣∣+ ∣∣∣ TP0
TP0+FN0

− TP1
TP1+FN1

∣∣∣)
Error Difference (BERK et al., 2021) FP0+FN0

N1+N0
− FP1+FN1

N1+N0

Error Ratio (BERK et al., 2021)
FP0+FN0
N1+N0

FP1+FN0
N1+N0

Discovery Difference (VERMA; RU-
BIN, 2018)

FP0
TP0+FP0

− FP1
TP1+FP1

Discovery Ratio (VERMA; RUBIN,
2018)

FP0
TP0+FP0

FP1
TP1+FP1

Predictive Equality (CORBETT-
DAVIES et al., 2017)

FP0
FP0+TN0

− FP1
FP1+TN1

False Positive Rate (FPR) Ratio
(VERMA; RUBIN, 2018)

FP0
FP0+TN0

FP1
FP1+TN1

False Omission Rate (FOR) Difference
(VERMA; RUBIN, 2018)

FN0
TN0+FN0

− FN1
TN1+FN1

False Omission Rate (FOR) Ratio
(VERMA; RUBIN, 2018)

FN0
TN0+FN0

FN1
TN1+FN1

Disparity Impact (PPR Ratio)
(FELDMAN et al., 2015)

TP0+FP0
N0

TP1+FP1
N1

Statistical Parity (DWORK et al.,
2012)

TP0+FP0
N0

− TP1+FP1
N1

Equal Opportunity (HARDT; PRICE;
SREBRO, 2016)

TP0
TP0+FN0

− TP1
TP1+FN1

False Negative Rate (FNR) Difference
(VERMA; RUBIN, 2018)

FN0
FN0+TP0

− FN1
FN1+TP1

False Negative Rate Ratio (VERMA;
RUBIN, 2018)

FN0
FN0+TP0

FN1
FN1+TP1

Average Odd Difference (MAND-
HALA; BHATTACHARYYA; MID-
HUNCHAKKARAVARTHY, 2022)

1
2 ∗
(

FP0
FP0+TN0

− FP1
FP1+TN1

+ TP0
TP0+FN0

− TP1
TP1+FN1

)

Predictive Parity (VERMA; RUBIN,
2018)

TP0
TP0+FP0

− TP1
TP1+FP1
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created being 1200 (30× 40), if not for the early stop in the proposed method.

The number of models and subsets analysed compares the impact of the proposed
modification over the base experiment on those quantitative measures. Furthermore,
the experiment’s stability is investigated by repeating it 30 times and analysing
the results’ box plot, both for the number of models and the number of subsets.
Additionally, the mean execution time between both experiments are compared.

2. Analysis of metric subsets: The analysis of established metrics subsets seeks to
validate each group of metrics formed by examining the correlation between the
represented metrics and the group’s representative, their similarities in relation to
their equations, and, finally, whether the grouped metrics are incompatible.

Definitions from the impossibility theorem were used to validate their compatibil-
ity (KLEINBERG; MULLAINATHAN; RAGHAVAN, 2016) and were deepened by
the studies of (KIM; CHEN; TALWALKAR, 2020) and (GARG; VILLASENOR;
FOGGO, 2020). These works talked about metrics that cannot be satisfied simul-
taneously, resulting in a trade-off in their performances; therefore, those metrics
should not be grouped together. The following incompatible metric sets were used:

(a) Statistical Parity, Equalized Odds and Predictive Parity.

(b) Predictive Equality, False Negative Ratio, Predictive Parity.

3. Subset recurrence analysis: Seeks to identify common behaviours, grouping patterns,
and generalisations among the experiments by examining the number of times two
metrics appear in the same group, the number of times each single group appears,
the frequency at which a metric is used as a representative, and the frequency at
which a metric represents another one. We also analyse the similarity in the metrics
equations to find underlying behaviours that can be justified by them.

4. Group similarity analysis: Used to determine how similar the metrics within a group
are and to compare experiments. This is performed by determining the mean ab-
solute distance between the representative and represented metrics in a group. To
further examine the results, we apply alternative contextual viewpoints to the model
and datasets, fixing one while measuring the mean value of the other.

To calculate the similarity, each classifier must be trained on the complete dataset.
Then, we measure the classifier’s fairness metrics and calculate similarity using the
previously picked groups, which indicates how close the metrics in the group are
to the chosen representative. Equation 3.6 represents the mean absolute distance
between two metrics. Where ns is the number of sensitive groups (excluding the
benefited), fk

s (representative) is an fairness metric k chosen as the representative
metric, and f j

s (represented) is an fairness metric j, in the same group as k.
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Metric
Similarity

=

∑ns

s=0

∣∣fk
s (representative)− f j

s (represented)
∣∣

ns

(3.6)
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Results and Discussions

In the following sections, we present our experiment results in terms of the evaluation
points detailed in section 3.2.4.4.

4.1 Number of models and subsets

4.1.1 Results

The goal of this comparison is to examine the differences from the base experiment to
the proposed experiment, which added the stratified sampling strategy, the Kendall cor-
relation, and the early stopping criteria using MAD. To define the early stop threshold,
different pairs of the maximum MAD value and the minimum number of metrics under
the MAD value were used, ranging respectively from 0.05 to 0.95 with a step of 0.1 and
from 4 to 16 with a step of 1, resulting in 130 combinations that were chosen based on
the highest mean correlation from all the represented to representative metrics in the ex-
periment. Pairs that resulted in a one model difference from the minimum or maximum
mean number of models were also excluded, as they were too rigorous or lenient. The
chosen pair was 0.35 and 10, as shown in Table 4.1, and they were used in all the results.
As a reference, the mean correlation from the base experiment was 0.760. The metric
groups for the proposed and base experiment can be seen from figures S.1 to S.20 and
from figures S.21 to S.40 respectively.

Tables 4.2 and 4.3 compare the results based on the number of models generated and the
number of subsets. Figure 4.1 illustrates the number of models for each of the proposed
method’s cases, while Figure 4.2 illustrates the number of subsets produced for the base
and proposed method’s cases, both figures include the quartile interval, median, lowest,
and maximum values, based on the results of 30 executions. Finally, Table 4.4 displays
the average time required to choose the representative metrics for each case study, as well
as the difference between the proposed and base method, taking into account 30 repeated
executions.
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Table 4.1: Top 10 results of different threshold parameters for the early stop. Sorted by mean
correlation and with the values within one under or over the maximum and minimum number
of models excluded. In green is the chosen parameter.

RankingMaximum
MAD

Minimun
Number
of
Metrics

Mean
Models
Used

Variation
Models
Used

Mean
Subsets
Created

Variation
Subset
created

Mean
Correlation

Variation
Correlation

1 0.350 10 11.350 119.924 5.800 3.011 0.755 0.004
2 0.250 14 28.000 41.684 6.350 2.766 0.750 0.003
3 0.350 6 4.300 0.642 5.600 2.147 0.750 0.003
4 0.250 4 5.050 2.997 5.800 3.221 0.749 0.003
5 0.450 14 14.900 116.305 6.000 2.842 0.748 0.002
6 0.150 4 15.950 128.050 6.350 2.976 0.746 0.002
7 0.550 8 4.250 0.829 5.400 3.410 0.744 0.005
8 0.050 5 28.700 33.800 6.350 2.450 0.743 0.003
9 0.350 13 20.850 103.503 5.950 3.629 0.742 0.004
10 0.150 8 22.200 108.168 6.050 3.313 0.742 0.003

Table 4.2: The number of models used in each dataset for the proposed experiment, and the
percentage reduction*.

Dataset Number of models ↓ (reduction%↑)
KNN MLP SVC RF Logit

Adult 4(86.66%) 4(86.66%) 4(86.66%) 4(86.66%) 5(83.33%)

Bank 30(0.00%) 27(10.00%) 27(10.00%) 30(0.00%) 30(0.00%)

COMPAS 4(86.66%) 4(86.66%) 4(86.66%) 4(86.66%) 30(0.00%)

German 8(73.33%) 6(80.00%) 5(83.33%) 6(80.00%) 4(86.66%)
*The number of models in the base experiment is always 30.

Table 4.3: Number of subsets achieved in each experiment, separated by model, comparing the
proposed and base experiment.

Experiment Dataset Number of subsets ↓ *
KNN MLP SVC RF Logit

Base Adult 6 6 7 7 6
Proposed Adult 6 7 9 7 7
Base Bank 3 6 4 3 3
Proposed Bank 7 8 7 6 7
Base COMPAS 4 3 5 3 6
Proposed COMPAS 5 6 7 5 5
Base German 3 6 3 6 5
Proposed German 3 3 3 4 4
*Values considered for tau = 0.5.
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Figure 4.1: Box plot of the stopping criteria for each dataset and model.
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Figure 4.2: Box plot of subsets for each dataset and model.
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Context
Base
mean
execution
time(s)

Proposed
mean
execution
time(s)

Percent
Difference

*Legend

Adult_KNN 13.799 7.807 -43.41% -65.00%
Adult_Logit 6.714 7.531 12.15% -30.00%
Adult_MLP 14.028 5.628 -59.87% 0.000%
Adult_RF 11.266 6.616 -41.27% 30.00%
Adult_SVC 13.112 6.382 -51.32% 65.00%
Bank_KNN 17.955 22.093 23.04%
Bank_Logit 6.767 11.133 64.51%
Bank_MLP 10.671 14.276 33.78%
Bank_RF 11.864 8.340 -29.701%
Bank_SVC 14.054 11.573 -17.65%
Compass_KNN 5.810 3.699 -36.32%
Compass_Logit 5.679 4.679 -17.61%
Compass_MLP 11.487 4.621 -59.76%
Compass_RF 8.742 4.632 -47.02%
Compass_SVC 7.625 4.077 -46.52%
German_KNN 5.051 4.605 -8.82%
German_Logit 5.230 4.644 -11.19%
German_MLP 7.109 6.119 -13.93%
German_RF 7.235 4.544 -37.20%
German_SVC 6.958 4.988 -28.31%
Mean 9.558 7.399 -20.82%

Table 4.4: Comparison of mean execution times over 30 executions for metric selection. The
Percent Difference shows the relative change in execution time for the proposed method compared
to the base method. Negative values indicate a decrease in execution time, while positive values
indicate an increase.

4.1.2 Discussion

Table 4.2 outlines that the stopping criteria optimised the number of models generated
in most cases, with the worst results for all models using the Bank dataset and the
Logit model using the Compas dataset. The average reduction of models generated was
64.37%. Furthermore, Table 4.3 shows the number of subsets for each dataset and model
combination, with the proposed experiment presenting an overall higher number of subsets
for the Bank and Compas datasets while remaining close to the base result for the Adult
and being smaller for the German datasets.
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When the number of models was reduced, less computational work was required, result-
ing in competitive outcomes when compared to the baseline study, which always needs
30 models for every execution, as seen in Figure 4.1. The stopping criterion varied con-
siderably across the cases, with the Adult and Compas having low variation across the
models, with only some outliers, except for the Logit, which had higher quartiles, with
a variation of 5 to 10 models in Adult dataset. The German model expressed a similar
variation across the models; the RF outliers are more notable, reaching 30 models. For the
Bank dataset with the Logit, KNN and RF architectures, 30 models were always needed,
showing that the stopping criteria were not effective in those cases, while the SVC and
MLP had the highest variation, floating from 4 to 30 models. In general, the number of
models stayed below the base experiment, ensuring a computational gain when estimating
the representative metrics without considerably increasing the variability of the results,
as Figure 4.2 depicts.

Furthermore, related to the number of subsets the proposed experiment findings are gen-
erally similar to the base, with certain examples having a lower number of subsets and
less variation, such as Logit model for the Compas and German datasets, and others hav-
ing a higher number of subsets or more variation, such as the MLP model for the Adult
and German datasets. Another critical point is the dataset’s dependence on the outcome
because, even though the same metrics were used, the number of subsets formed differs
in each case.

Finally, Table 4.4 indicates an average reduction of 20.82% in execution time. An impor-
tant note about execution time is that the models used in the tests are small and fast to
train; as a result, when the reduction of the number of models is small, the execution time
may increase since the early stop adds another phase of computations to the process. This
increase should not be relevant when training larger models, which take longer to train,
because the increase in model size has no effect on the early stop calculation. In other
words, the proposed experiment will increase processing time by a few seconds, whereas
reducing a single model might reduce time by hours.

4.2 Analysis of the Metrics subsets

4.2.1 Results

The examination of established metric groups is a central focus within this study, en-
compassing the different contexts and experiments. Specifically, Tables S.1 through S.40
show the representations of the formed metric groups, highlighting the correlation values
and the similar terms (TP, FP, TN, FN) from the equations between each represented
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metric and its corresponding representative, facilitating the analysis of how equation sim-
ilarity influences the constitution of these metric groups, the effects on correlation, and
distinctive patterns in the clustering of metrics for each experiment.

4.2.2 Discussion

The expected results are that fairness metrics, with similar equations, would be grouped
together and have a high correlation between them. Nevertheless, the presence of similar
terms does not exhibit a straightforward, direct relationship with correlation values. In
certain instances, metrics with a greater number of similar terms may display either lower
or higher correlations. An exception is for metric pairs, metrics with similar formulas
that share the same base calculation but differ in the operation, where the correlation is
constantly high (over 70%), for example in tables for example in tables S.2,S.6,S.25, S.33.
This behaviour shows that the structure of the equation as a whole, considering terms
and operations, is more impactful for the metric similarity than only the similar terms.
Most metric pairs are always together in the same cluster, but the proposed experiment
clusters them together more often than the base experiment, with the Error Ratio and
Difference being the ones that are in many instances separated, 6 and 10 respectively, for
the proposed and base experiment. Within the majority of groups, one or two similar
terms predominate in both experiments.

In the base experiment, there are instances where a metric is represented by another
metric devoid of any related terms in their respective equations. This recurrent pattern
is notably discernible in Tables discernible in Tables S.22-S.25, S.28,S.29, S.34-S.36, S.38,
S.40. Such behaviour is generally less prevalent in the proposed experiment, with an
exception being the German dataset, where this phenomenon occurs in Tables S.16-S.18,
S.20. Showing that the proposed experiment have more coherent groups.

4.3 Subset Recurrence Analysis

4.3.1 Results

The results of the cluster recurrence and repetition analysis are reported in two parts.
Figure 4.3 illustrates the first part, which shows the frequency with which two metrics
occur together in a heat-map style. Table 4.5 presents the second part, which displays
the repeated clusters that were created during the experiments.
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Figure 4.3: The frequency at which two metrics are in the same group across all contexts.

Table 4.5: Repetition of clusters across contexts.

Experiment Metrics Repetitions

Predictive Parity 14
FNR Difference, FNR Ratio 9
FOR Difference, FOR Ratio 8
Equalized Odds 6

Proposed Disparate Impact, Error Difference, Error Ratio, Statistical Parity 5
Average Odd Difference, Equal Opportunity, Equalized Odds 5
Predictive Equality, FPR Ratio, 5
Average Odd Difference, Equal Opportunity 4
Error Difference 3
Error Ratio 3
Equalized Odds 7
Error Difference 6
Discovery Ratio, Discovery Difference 6

Baseline FNR Difference, FNR Ratio 6
Disparate Impact, Error Ratio, Statistical Parity 5
Predictive Parity, FOR Difference, FOR Ratio 4
Equal Opportunity 3
Predictive Parity 3
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4.3.2 Discussion

The heat-maps in Figure 4.3 indicate similarities in the metrics clustering for both ex-
periments. As an illustration, consider the Predictive Parity metric, which is isolated in
the majority of clusters and displays an individual bias measure that, aside from rare
instances in which metrics containing the True Positive term could appear related to it.

Additionally, we observed that metric pairs are often clustered together. Figure 4.3 il-
lustrates this effect in both experiments for the metric pairs: FOR Difference and Ratio,
FNR Difference and Ratio, Disparity Impact and Statistical Parity, Error Difference and
Ratio and the FPR Ratio and Predictive Equality metrics.

The exceptions are the Average Odds Difference and Equalized Odds pair, which have
quite similar formulations but are infrequently grouped together, differing solely by the
absolute value presence. Equalized Odds, in both experiments, were paired at most seven
times in the base experiment and six times in the proposed experiment, suggesting that
it’s a relevant metric and reflecting a unique aspect of bias. Predictive Parity is the only
other metric in a comparable circumstance. The Average Odds Difference, had a high
recurrence with Equal Opportunity across the experiments, and with Predictive Equality
and FPR Ratio in the base experiment, metrics focused on TP or FP which are terms
present in Average Odds Difference.

Certain metrics are never combined in either experiment, indicating that they measure
unfairness in different ways. For instance, the Error Ratio and Predictive Parity do not
appear together in any case and do not share any elements in their equations. However,
FNR Difference and Average Odds Difference share the FN and TP but do not appear
together. As with the Average Odds Difference and Equalized Odds, these results show
that while some equation similarity is required for correlated behaviour, it does not ensure
that the metrics will measure unfairness in the same way.

Comparing the results illustrated by Figure 4.3, the proposed experiment presents a higher
recurrence of metric pairs when the correlation is strong, while also presenting less in-
frequent groups. Indicating that the proposed experiment managed to group the metrics
more consistently, which may lead to lower context dependence.

Table 4.5 displays the metric groups for each experiment that appear in at least three
contexts. 50 and 58 distinct groups in total were discovered for the proposed and base
experiments, respectively. Of these, 6 repeated twice for the proposed experiment and 4
for the base experiment. The overall cluster recurrence of the proposed experiment was
the highest, corroborating the results displayed in Figure 4.3 and the group consistency.
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Clusters containing a single metric and two similar metrics had the highest repetition
in both experiments. This indicates that while some metrics, such as isolated metrics,
represent unique perspectives on unfairness, others are repetitive and can be substituted,
as would be expected from similar metrics like FNR Ratio and Difference. Except for the
lack of the Error Difference in the base experiment, the following groups are present in
both experiments: Disparate Impact, Error Difference, Error Ratio, and Statistical Parity.
The Error Ratio and Difference, along with the Statistical Parity and Disparate Impact,
are two metric pairs. Both use N in the denominator and FP in the numerator; the only
distinction is whether TP or FN is present in the numerator. Among the most frequent
groups, the impossibility theorem is followed by not grouping together any incompatible
metrics.

4.4 Frequency of representative metrics

4.4.1 Results

Metrics that are frequently chosen as representative are the best for analysing unfairness
because they will either have a distinct definition of unfairness (when they are isolated)
or will cover an aspect of unfairness more broadly. The outcomes are displayed as follows:
4.6 for the isolated metrics; Table 4.7 for overall frequencies; Tables 4.8 and 4.9 for the
dataset view; Tables 4.10 and 4.11 for the model view.

Table 4.6: Normalised frequency of isolated metrics for each case (20).

Metrics Base Proposed

Disparate Impact 0.000 0.000
Discovery Ratio 0.050 0.000
FOR Ratio 0.000 0.050
FPR Ratio 0.000 0.100
FNR Ratio 0.050 0.000
Equalized Odds 0.350 0.300
Error Difference 0.300 0.150
Error Ratio 0.050 0.150
Discovery Difference 0.000 0.000
Average Odd Difference 0.000 0.000
FOR Difference 0.100 0.000
Predictive Equality 0.050 0.050
Statistical Parity 0.000 0.050
Equal Opportunity 0.150 0.100
FNR Difference 0.000 0.000
Predictive Parity 0.150 0.700
Mean 0.078 0.103
Variance 0.012 0.032
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Table 4.7: Normalised frequency of representative metrics for each case (20). A higher value
indicates a more unique measure*.

Metrics Base Proposed *Legend

Disparate Impact 0.250 0.250 0.000
Discovery Ratio 0.200 0.200 0.250
FOR Ratio 0.300 0.350 0.500
FPR Ratio 0.250 0.400 0.750
FNR Ratio 0.400 0.300 1.000
Equalized Odds 0.500 0.500
Error Difference 0.300 0.300
Error Ratio 0.200 0.450
Discovery Difference 0.300 0.400
Average Odd Difference 0.400 0.450
FOR Difference 0.300 0.350
Predictive Equality 0.150 0.300
Statistical Parity 0.250 0.150
Equal Opportunity 0.250 0.300
FNR Difference 0.350 0.350
Predictive Parity 0.350 0.750
Mean: 0.297 0.363
Variance 0.008 0.019

Table 4.8: Normalised frequency of representative metrics for each dataset in the base experiment
(5). A higher value indicates a more unique measure*.

Metrics Adult Bank Compas German *Legend

Disparate Impact 0.200 0.400 0.000 0.400 0.000
Discovery Ratio 0.000 0.000 0.400 0.400 0.250
FOR Ratio 0.200 0.400 0.200 0.400 0.500
FPR Ratio 0.400 0.000 0.600 0.000 0.750
FNR Ratio 0.400 0.600 0.400 0.200 1.000
Equalized Odds 0.600 0.200 0.400 0.800
Error Difference 0.800 0.200 0.000 0.200
Error Ratio 0.400 0.200 0.000 0.200
Discovery Difference 0.800 0.000 0.200 0.200
Average Odd Difference 0.400 0.600 0.400 0.200
FOR Difference 0.400 0.600 0.200 0.000
Predictive Equality 0.000 0.200 0.200 0.200
Statistical Parity 0.400 0.000 0.200 0.400
Equal Opportunity 0.400 0.200 0.000 0.400
FNR Difference 0.600 0.200 0.400 0.200
Predictive Parity 0.400 0.000 0.600 0.400
Mean 0.400 0.238 0.263 0.288
Variance 0.053 0.049 0.041 0.037
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Table 4.9: Normalised frequency of representative metrics for each dataset in the proposed
experiment (5). A higher value indicates a more unique measure*.

Metrics Adult Bank Compas German *Legend

Disparate Impact 0.400 0.200 0.200 0.200 0.000
Discovery Ratio 0.400 0.400 0.000 0.000 0.250
FOR Ratio 0.600 0.400 0.200 0.200 0.500
FPR Ratio 0.400 0.600 0.200 0.400 0.750
FNR Ratio 0.000 0.600 0.600 0.000 1.000
Equalized Odds 0.600 0.400 0.800 0.200
Error Difference 0.600 0.200 0.200 0.200
Error Ratio 1.000 0.600 0.000 0.200
Discovery Difference 0.200 0.600 0.600 0.200
Average Odd Difference 0.400 0.600 0.600 0.200
FOR Difference 0.400 0.400 0.200 0.400
Predictive Equality 0.200 0.200 0.400 0.400
Statistical Parity 0.200 0.200 0.200 0.000
Equal Opportunity 0.200 0.200 0.400 0.400
FNR Difference 0.600 0.400 0.200 0.200
Predictive Parity 1.000 1.000 0.800 0.200
Mean 0.450 0.438 0.350 0.213
Variance 0.077 0.049 0.067 0.019

Table 4.10: Normalised frequency of representative metrics for each model in the base experiment
(4). A higher value indicates a more unique measure*.

Metrics KNN Logit MLP RF SVC *Legend

Disparate Impact 0.500 0.000 0.250 0.000 0.500 0.000
Discovery Ratio 0.250 0.250 0.250 0.250 0.000 0.250
FOR Ratio 0.500 0.500 0.250 0.000 0.250 0.500
FPR Ratio 0.000 0.250 0.250 0.500 0.250 0.750
FNR Ratio 0.250 0.250 0.000 0.750 0.750 1.000
Equalized Odds 0.500 0.500 0.250 0.500 0.750
Error Difference 0.250 0.250 0.750 0.250 0.000
Error Ratio 0.000 0.500 0.250 0.250 0.000
Discovery Difference 0.000 0.250 0.250 0.250 0.750
Average Odd Difference 0.750 0.500 0.500 0.250 0.000
FOR Difference 0.250 0.250 0.250 0.250 0.500
Predictive Equality 0.000 0.250 0.000 0.250 0.250
Statistical Parity 0.250 0.250 0.250 0.250 0.250
Equal Opportunity 0.250 0.250 0.250 0.000 0.500
FNR Difference 0.250 0.250 1.000 0.250 0.000
Predictive Parity 0.000 0.500 0.500 0.750 0.000
Mean 0.250 0.313 0.328 0.297 0.297
Variance 0.050 0.021 0.064 0.052 0.085
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Table 4.11: Normalised frequency of representative metrics for each model in the proposed
experiment (4). A higher value indicates a more unique measure*.

Metrics KNN Logit MLP RF SVC *Legend

Disparate Impact 0.000 0.500 0.250 0.250 0.250 0.000
Discovery Ratio 0.250 0.250 0.500 0.000 0.000 0.250
FOR Ratio 0.500 0.250 0.500 0.500 0.000 0.500
FPR Ratio 0.750 0.250 0.250 0.750 0.000 0.750
FNR Ratio 0.000 0.500 0.000 0.500 0.500 1.000
Equalized Odds 0.250 0.250 1.000 0.750 0.250
Error Difference 0.500 0.500 0.000 0.000 0.500
Error Ratio 0.250 0.500 0.500 0.750 0.250
Discovery Difference 0.500 0.250 0.250 0.250 0.750
Average Odd Difference 0.250 0.500 0.250 0.500 0.750
FOR Difference 0.250 0.250 0.250 0.000 1.000
Predictive Equality 0.000 0.250 0.500 0.000 0.750
Statistical Parity 0.250 0.000 0.000 0.250 0.250
Equal Opportunity 0.500 0.000 0.500 0.250 0.250
FNR Difference 0.500 0.500 0.500 0.000 0.250
Predictive Parity 0.500 1.000 0.750 0.750 0.750
Mean 0.328 0.359 0.375 0.344 0.406
Variance 0.048 0.058 0.075 0.091 0.099

4.4.2 Discussion

Table 4.6 highlights two metrics: Predictive Parity in the proposed experiment and Equal-
ized Odds for both scenarios, as they are isolated more frequently. Equalized Odds is
satisfied when both of its terms, TPR and FPR, are also satisfied. It is a distinct metric
in terms of equation, and the absolute value sets it apart from the Average Odd Differ-
ence. Predictive Parity is the only metric that looks only at the positive miss-classification
values, justifying the isolation, and is satisfied when the classes have an equal chance of
receiving a positive classification.

The most isolated metric is also the most representative metric in table 4.7 since an
isolated representative is still a representative metric. The idea that the fairness metrics
depend on context and no single metric predominates over the others is supported by the
fact that the frequency of the metrics remained relatively consistent across all experiments
and metrics, except for Predictive Parity.

The proposed modifications have a significant impact on the metric chosen as represen-
tative, as shown by a comparison of tables 4.8 and 4.9, as well as tables 4.10 and 4.11,
with dataset and model vision, respectively. The proposed experiment demonstrates a
dataset- or model-specific metric that would be effective in most cases where one of those
factors is constant, showing consistency with metrics that are always or never selected.
The same can be said in a smaller degree for the base experiment, as there is less of those
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cases.

Furthermore, when analysing the dataset element for the proposed experiment, the met-
rics highlighted in Table 4.9 for each application scenario were: Error Ratio and Predictive
Parity for demographic census in Adult dataset, Predictive Parity for advertisement in
Bank dataset, and Equalized Odds and Predictive Parity for criminal judgement in Com-
pas dataset. The Predictive Parity, in all three examples, confirms that one of the most
important issues in those circumstances is the proportion of correct positive predictions
between groups, while the Error Ratio for the demographic census indicates that a prob-
lem is the difference in miss classification between groups, encompassing both positive and
negative classes over the total. Finally, the Equalized Odds in the criminal judgement
scenario show that the balance between correct and incorrect predictions of the positive
class is a concern. Conversely, the German dataset seems to be highly dependent in the
model used, as no single metric stood out.

4.5 Group Similarity Analysis

4.5.1 Results

Tables 4.12, 4.13, 4.14, and 4.15 display the group similarity analysis with various views.
Each value measures the average distance between the represented metrics and the rep-
resenting one. The overall average results for each experiment are displayed using the
metric shown in Table 4.12.
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Table 4.12: Similarity between each metric and its representative, averaging each metric. Lower
values indicate better representation*.

Metrics Base Proposed *Legend

Disparate Impact 0.349 0.565 0.000
Discovery Ratio 0.323 0.301 0.250
FOR Ratio 0.479 0.348 0.500
FPR Ratio 0.599 0.662 0.750
FNR Ratio 0.249 0.105 1.000
Equalized Odds 0.169 0.178
Error Difference 0.411 0.387
Error Ratio 0.401 0.561
Discovery Difference 0.364 0.328
Average Odd Difference 0.201 0.132
FOR Difference 0.364 0.313
Predictive Equality 0.232 0.408
Statistical Parity 0.275 0.376
Equal Opportunity 0.172 0.125
FNR Difference 0.210 0.111
Predictive Parity 0.328 0.353
Mean 0.320 0.328
Variance 0.014 0.029

Table 4.13: Similarity between each metric and its representative, averaging each context. Lower
values indicate better representation*.

Context Base Proposed *Legend

Adult_KNN 0.134 0.122 0.000
Adult_Logit 0.147 0.492 0.250
Adult_MLP 0.161 0.229 0.500
Adult_RF 0.078 0.160 0.750
Adult_SVC 0.075 0.051 1.000
Bank_KNN 0.301 0.374
Bank_Logit 0.369 0.265
Bank_MLP 0.479 0.305
Bank_RF 0.336 0.372
Bank_SVC 0.283 0.286
Compas_KNN 0.398 0.333
Compas_Logit 0.456 0.367
Compas_MLP 0.465 0.330
Compas_RF 0.486 0.464
Compas_SVC 0.373 0.467
German_KNN 0.218 0.434
German_Logit 0.374 0.208
German_MLP 0.237 0.315
German_RF 0.215 0.383
German_SVC 0.678 0.460
Mean 0.3132 0.321
Variance 0.025 0.015
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Table 4.14: Similarity between each metric and its representative, averaging each model. Lower
values indicate better representation*.

Model Base Proposed *Legend

KNN 0.263 0.316 0.000
Logit 0.336 0.333 0.250
MLP 0.336 0.295 0.500
RF 0.279 0.345 0.750
SVC 0.352 0.316 1.000
Mean 0.313 0.321
Variance 0.002 0.000

Table 4.15: Similarity between each metric and its representative, averaging each dataset. Lower
values indicate better representation*.

Dataset Base Proposed *Legend

Adult 0.119 0.211 0.000
Bank 0.354 0.320 0.250
Compas 0.436 0.392 0.500
German 0.344 0.360 0.750
Mean 0.313 0.321 1.000
Variance 0.018 0.006

4.5.2 Discussion

The practically identical mean values across the tables for the base and proposed models
demonstrate that the reduction of models has little impact on the group quality as a whole.
Although certain metrics perform better in one experiment than another, the majority of
metrics show similar results, with differences of about 0.2, indicating that the results are
within the same range. Average Odd Difference and Equalized Odds, two metrics that
include more elements than the others, Equal Opportunity, which is included in the first
two metrics, and the pair FNR ratio/difference, which represents the miss-classification
for the positive values, are the metrics that yielded the best results across all experiments.
This indicates that those metrics behaviours are well represented.

FPR Ratio, which shows miss-classification for negative values, was the least effective
metric in both trials. Predictive Equality, on the other hand, which has an equation
that is similar, produced a better result. The Error Ratio and Error Difference were two
other metrics that under-performed. They both contain terms that are used in other
equations, but they do it differently because they use the total number of elements from
both classes in the denominator. Even though they are not always well represented, they
should be examined on an individual basis since they constitute important metrics for
model evaluation.
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Table 4.14 shows the models which demonstrate that the differences in the models had no
discernible effect on how similar the formed groups were in any experiment, since all values
are close. Demonstrating that despite group composition changing across models, group
quality remains constant. However, the dataset view in table 4.15 reveals that, in both
experiments, the Adult dataset had more distinct groups, whereas the Compas dataset
had closer groups. Race is used as a sensitive attribute in both datasets, which makes
this behaviour especially intriguing. However, when compared to the Compas dataset,
the Adult dataset has more data instances and a more uneven distribution. German
and Bank had comparable and average results, with gender and age sensitive attributes,
respectively.

The group similarity analysis is significantly impacted by the dataset; a more detailed
analysis is shown in table 4.13. While most results in a given context are similar, there
are some variations and outliers that cannot be entirely attributed to either the model
or the dataset. Tables 4.2 and 4.3 provide comparisons of the reduction percentage and
number of subsets between the two experiments, which can be used to further investigate
cases where there is a variation of more than 0.1 between the two experiments. The
following are the cases: German KNN, German Logit, German RF, German SVC, Adult
Logit, Bank Logit, Bank MLP, Compas MLP.

The proposed experiment in Bank Logit and Bank MLP cases showed no or minimal
reduction in the number of models (0% and 10%, respectively), an increase in the number
of subsets (by 4 and 2, respectively), and improved similarity results. The increased
number of subsets is expected to improve the distance results since the metrics will be
more evenly distributed, bringing the subsets closer together.

The Adult Logit showed an increase of one subset, with a higher model reduction of
83.33%; however, the grouping fared considerably worse, suggesting that insufficient mod-
els were used to accurately correlate the fairness metrics. Still, while reducing the number
of models between 73.33% and 86.66%, the cases of Compas MLP, German KNN, German
Logit, German RF, and German SVC had varying results.

4.6 Overall Discussion

The primary objective of this dissertation was to propose a computational method that
allows the selection of the most representative metrics for bias and unfairness assessment
in post-processing for binary classification machine learning models in different contexts.

To accomplish this objective, 16 state-of-the-art metrics were analysed and selected for
detecting bias and unfairness, which were used in four separate datasets and five different
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ML models. A correlation-based algorithm was developed, improving on various aspects
of a base algorithm, including better data bias representation, increased computational ef-
ficiency, a more accurate and robust correlation method, and explicit tests and validation.
Finally, we compare the proposed algorithm’s performance in selecting the representative
metrics to the base method in terms of the number of models and subsets, analysis of
the formed subsets, recurrence of the subset, frequency of the representative metrics, and
group similarity.

In summary, the analysis demonstrated that the number of metrics could be reduced for
both the base and proposed experiments. Despite this, the proposed experiment managed
to maintain competitive performance while lowering both the computational cost and the
quantity of metrics. Aside from the computational cost, the proposed experiment delivers
a more consistent result across contexts, suggesting that in similar contexts it may be
viable to reuse the chosen metrics; however, a new choice of metrics is still preferred.
This context consistency is caused by a better representation of the data, coming from
the stratified samples and from the appropriated correlation method, considering the
non-normality of the data.

The reduction in the number of models has significant implications for computational
efficiency, allowing for faster processing without compromising the quality of the results
and supporting the development of fair ML models that are also sustainable with a reduced
carbon footprint. The proposed experiment is especially desirable for large-scale tasks,
such as text generation, where retraining and fine-tuning the model is expensive, and any
reduction is advantageous.

Analysing the underlined behaviour of the fairness metrics, metrics with similar equa-
tions that only differ in the operation and use the same terms generally exhibit similar
behaviour. The proposed experiment was able to pair them more frequently than the base
experiment, and the correlation between them is consistently high, making it the first op-
tion for reducing the number of metrics by eliminating one of the pair’s elements. Two
metric pairs had different behaviour: the Equalized Odds and Average Odd Difference
pair, and the Error Ratio and Error Difference pair. Equalized Odds showed a unique
unfairness view, frequently being isolated in a cluster, with the presence of the absolute
value in the equation being enough to differentiate it from Average Odd Difference. Both
metrics were well represented, with a small distance between their groups. Error Ratio
and Error Difference, on the other hand, were two of the worst performance metrics, dis-
tance wise, likely caused by the amount of information in the equation being higher than
the other metrics. The correlation is enough to group them, but a case-by-case analysis
may be necessary.

In cases that don’t involve a metric pair, the presence of similar terms is a strong indication
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of a direct relationship between the metrics, but it’s not enough to determine the groups
and the correlation, as a single term can change the metric results depending on the
context.

Analysing the metrics chosen as representatives, if all contexts are considered, there is not
a metric to highlight, as they all have around the same pick rate. But when looking closer
into only the models, or only the datasets, while keeping the other one the same, we can see
that more consistency arises, as there are metrics that are always or never picked; this is
particularly true in the proposed experiment. For the analysed cases, the Predictive Parity
metric was highlighted in the criminal judgement, demographic census, and advertisement
scenarios, while the Error Ratio metric was highlighted for the demographic census, and
Equalized Odds was in evidence in criminal judgment. The sensitive attribute analysed
didn’t show any underlying property kept in different datasets, as the two using race as
a sensitive attribute had different results in relation to the group distance, pointing out
that the size of the dataset and the distribution of the data have a bigger impact in the
context than the sensitive attribute.
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Conclusions

This work Research Question is ’How to reduce the fairness metrics scope for a problem,
maintaining their representativeness, and supporting identification and mitigation of bias
and unfairness in a model?’, leading to the overarching objective to propose a computa-
tional method that allows the selection of the most representative metrics for bias and
unfairness assessment in post-processing for binary classification machine learning models
in different contexts.

The research question can be addressed by implementing a method that uses bootstrap
sampling via MCMC to estimate correlations between fairness metrics. Following with a
clustering process to group similar metrics, allowing for the selection of a representative
metric from each cluster. This approach, referred to as the base experiment, selects a
subset of metrics to be used for the identification and mitigation of bias and unfairness.

However, to ensure the representativeness of the selected metrics, it’s crucial to address
certain caveats in the method, including the use of random sampling, the high compu-
tational cost, the choice of correlation methods, and the validation of results. Each of
these issues has been explored, and solutions have been integrated into the proposed
experiment.

The proposed experiment included three novel modifications to the base experiment: a
MAD-based stop criterion to reduce the computational cost of running the Monte Carlo
method for estimating the fairness metrics correlation, a stratified sample approach rather
than random samples to better reflect the data bias, and the Kendall correlation method
instead of Pearson to better work with the new set of data.

To achieve the overarching objective, we confronted and improved ideas about using cor-
relation as a heuristic tool for finding representative fairness metrics for a context (dataset
+ model), using five binary classification ML models: KNN, Logit, MLP, RF, and SVC,
trained with four datasets: Adult, Bank, Compas, and German, encompassing respectively
the fields of criminal judgement, bank loans, demographic census, and advertisement. Fi-
nally, we provided experimental results demonstrating the effectiveness of the mentioned
approach in different contexts.

As a result of the modifications, the number of models decreased by an average of 64.37%
from the base experiment, which always calls for 30 models, and the training time was
reduced by 20.82%. This ensures a computational gain when estimating the representative
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metrics without suffering significant losses. The proposed method did not lead to an
increase in the variability of the results; no group that violates the impossibility theorem
was formed; the mean distance between a represented and representative metric remains
largely unchanged; and similar metrics are paired together more frequently.

Our proposed method successfully reduced the number of models needed to estimate the
representative metrics in a given context while keeping the chosen metrics and formed
relevant subsets, with improvements in the grouping consistency. We show that, with the
appropriate method, correlation can be used to estimate the most representative fairness
metrics if the dataset’s class imbalance is respected and a more robust correlation, such
as Kendall, is applied, taking into account the number of samples and the data’s non-
normality.

The results of this work have significant practical implications for future research and
opportunities for industry and society. By enabling interdisciplinary dialogue to address
ethical and social sustainability challenges, this research directly contributes to several
SDGs, including:

• SDG 5: Achieve gender equality and empower all women and girls.

Our work contributes by evaluating a case study focused on gender unfairness in the
context of bank loans. Additionally, we provide a set of representative metrics that
are highlighted in this context.

• SDG 10: Reduce inequality within and among countries.

By focussing on reducing inequalities, our research ensures that advantaged groups
do not maintain disproportionate advantages over marginalised groups. This directly
supports the goal by promoting fairness and equity.

• SDG 13: Take urgent action to combat climate change and its impacts.

We contribute to SDG 13 by reducing the computational cost of selecting a repre-
sentative fairness metric, leading to a more computationally efficient and environ-
mentally sustainable approach that has the potential to reduce carbon footprint.

• SDG 16: Promote peaceful and inclusive societies for sustainable development, pro-
vide access to justice for all and build effective, accountable and inclusive institutions
at all levels.

The method proposed supports and enables the development of fair decision-making
in machine learning, stepping closer to trustworthy AI systems with the potential to
prevent the propagation of inequities and contributing to more inclusive institutions.

Finally, it is important to note that the method created is not limited to the investigated
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case studies or the established fairness metrics and could be used for other relevant top-
ics for unfairness assessment in post-processing for binary classification. For example,
tackling race, gender, and disability discrimination in automated recruiting systems (MI-
NATEL et al., 2023); addressing age, gender, and ethnicity discrimination in automated
immigration and refugee applications (MOLNAR, 2019); and issues of hate speech against
minorities and the production of sexist, racist, or xenophobic responses by LLM chatbot
(MINATEL et al., 2023).
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Appendix A

S. Supplementary Materials

Group Metric Correlation Similar Terms

1 FNR Difference
FNR Ratio 0.9333 TP, FN
Equalized Odds 0.6667 TP, FN
Discovery ratio 0.5941 TP
Discovery Difference 0.5774 TP

2 Predictive Parity
Equal Opportunity 0.5774 TP
Average Odd Difference 0.5105 FP, TP

3 Error Difference
4 Error Ratio

Disparate Impact 0.7395 FP
Statistical Parity 0.7395 FP

5 FOR Ratio
FOR Difference 0.9 TN, FN
Predictive Equality 0.5333 TN

6 FPR Ratio

Table S.1: Terms similarity and correlation comparison for each metric group in Adult KNN
Proposed experiment.

Group Metric Correlation Similar Terms

1 Disparate Impact
Statistical Parity 0.7474 FP, TP
FPR Ratio 0.6526 FP
Average Odd Difference 0.5684 FP, TP
Equal Opportunity 0.5426 TP
Predictive Equality 0.5158 FP

2 Error Ratio
3 FOR Difference

FOR Ratio 0.9263 TN, FN
4 Discovery ratio

Discovery Difference 0.9263 FP, TP
5 Predictive Parity
6 Error Difference
7 FNR Difference

FNR Ratio 0.9032 TP, FN
Equalized Odds 0.7554 TP, FN

Table S.2: Terms similarity and correlation comparison for each metric group in Adult Logit
Proposed experiment.

61



Appendix A

Group Metric Correlation Similar Terms

1 Predictive Parity
2 Disparate Impact

Statistical Parity 0.8905 FP, TP
FPR Ratio 0.7 FP

3 Discovery ratio
Discovery Difference 0.8519 FP, TP

4 Error Ratio
5 Equalized Odds

FNR Ratio 0.6637 TP, FN
Error Difference 0.6612 FP, FN
FNR Difference 0.6283 TP, FN

6 FOR Ratio
FOR Difference 0.9167 TN, FN

7 Average Odd Difference
Equal Opportunity 0.8761 TP, FN
Predictive Equality 0.6336 FP, TN

Table S.3: Terms similarity and correlation comparison for each metric group in Adult MLP
Proposed experiment.

Group Metric Correlation Similar Terms

1 FPR Ratio
Predictive Equality 0.6565 FP, TN
Discovery ratio 0.6 FP
Disparate Impact 0.5649 FP
Discovery Difference 0.5344 FP
FOR Difference 0.5344 TN

2 Predictive Parity
3 FOR Ratio
4 Equalized Odds

Error Difference 0.5992 FP, FN
FNR Ratio 0.5897 TP, FN
FNR Difference 0.5726 TP, FN

5 Average Odd Difference
Equal Opportunity 0.9316 TP, FN

6 Statistical Parity
7 Error Ratio

Table S.4: Terms similarity and correlation comparison for each metric group in Adult RF
Proposed experiment.
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Group Metric Correlation Similar Terms

1 Error Ratio
Disparate Impact 0.9496 FP
Statistical Parity 0.7815 FP

2 Discovery Difference
Discovery ratio 0.9167 FP, TP

3 FOR Difference
FOR Ratio 0.8652 TN, FN

4 Equalized Odds
5 Equal Opportunity
6 Predictive Parity
7 Predictive Equality

FPR Ratio 0.9123 FP, TN
Average Odd Difference 0.6182 FP, TN

8 FNR Difference
FNR Ratio 0.707 TP, FN

9 Error Difference

Table S.5: Terms similarity and correlation comparison for each metric group in Adult SVC
Proposed experiment.

Group Metric Correlation Similar Terms

1 Error Difference
Error Ratio 0.6603 FP, FN
Statistical Parity 0.598 FP
Disparate Impact 0.5448 FP

2 Discovery ratio
Discovery Difference 0.9503 FP, TP

3 FOR Difference
FOR Ratio 0.9017 TN, FN

4 Predictive Parity
5 Average Odd Difference

Equalized Odds 0.7661 FP, TN, TP, FN
Equal Opportunity 0.7243 TP, FN

6 FPR Ratio
Predictive Equality 0.9081 FP, TN

7 FNR Difference
FNR Ratio 0.9638 TP, FN

Table S.6: Terms similarity and correlation comparison for each metric group in Bank KNN
Proposed experiment.
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Group Metric Correlation Similar Terms

1 FPR Ratio
Predictive Equality 0.9119 FP, TN

2 Discovery Difference
Discovery ratio 0.9695 FP, TP

3 FNR Ratio
FNR Difference 0.9638 TP, FN
FOR Ratio 0.5989 FN
FOR Difference 0.504 FN

4 Predictive Parity
5 Error Ratio

Error Difference 0.7882 FP, FN
6 Average Odd Difference

Equal Opportunity 0.7356 TP, FN
Equalized Odds 0.5593 FP, TN, TP, FN

7 Disparate Impact
Statistical Parity 0.9345 FP, TP

Table S.7: Terms similarity and correlation comparison for each metric group in Bank Logit
Proposed experiment.

Group Metric Correlation Similar Terms

1 Error Ratio
Disparate Impact 0.7756 FP
Statistical Parity 0.7738 FP
Error Difference 0.5538 FP, FN

2 Discovery ratio
Discovery Difference 0.8689 FP, TP

3 FNR Difference
FNR Ratio 0.89 TP, FN

4 FPR Ratio
Predictive Equality 0.8236 FP, TN

5 FOR Ratio
FOR Difference 0.6402 TN, FN

6 Equal Opportunity
Average Odd Difference 0.7244 TP, FN

7 Predictive Parity
8 Equalized Odds

Table S.8: Terms similarity and correlation comparison for each metric group in Bank MLP
Proposed experiment.
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Group Metric Correlation Similar Terms

1 Error Ratio
Statistical Parity 0.6328 FP
Disparate Impact 0.6188 FP
Error Difference 0.5201 FP, FN

2 Discovery Difference
Discovery ratio 0.9288 FP, TP
FPR Ratio 0.6826 FP
Predictive Equality 0.5729 FP

3 FOR Ratio
FOR Difference 0.8746 TN, FN

4 Equalized Odds
Average Odd Difference 0.9785 FP, TN, TP, FN
Equal Opportunity 0.8723 TP, FN

5 Predictive Parity
6 FNR Ratio

FNR Difference 0.9458 TP, FN

Table S.9: Terms similarity and correlation comparison for each metric group in Bank RF Pro-
posed experiment.

Group Metric Correlation Similar Terms

1 Discovery Difference
Discovery ratio 0.709 FP, TP

2 Average Odd Difference
Equal Opportunity 0.85 TP, FN
Equalized Odds 0.648 FP, TN, TP, FN

3 FNR Ratio
FNR Difference 0.7927 TP, FN

4 FOR Difference
FOR Ratio 0.7479 TN, FN

5 Statistical Parity
Disparate Impact 0.9814 FP, TP
Error Difference 0.6698 FP
Error Ratio 0.5418 FP

6 Predictive Equality
FPR Ratio 0.8452 FP, TN

7 Predictive Parity

Table S.10: Terms similarity and correlation comparison for each metric group in Bank SVC
Proposed experiment.
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Group Metric Correlation Similar Terms

1 Discovery Difference
Discovery ratio 0.9349 FP, TP
FNR Ratio 0.6963 TP
FNR Difference 0.6815 TP

2 Statistical Parity
FPR Ratio 0.9063 FP
Predictive Equality 0.8833 FP
Disparate Impact 0.8754 FP, TP
Error Ratio 0.8541 FP
Error Difference 0.8011 FP
Average Odd Difference 0.7333 FP, TP

3 Equalized Odds
4 Equal Opportunity

Predictive Parity 0.6815 TP
5 FOR Ratio

FOR Difference 0.9895 TN, FN

Table S.11: Terms similarity and correlation comparison for each metric group in Compas KNN
Proposed experiment.

Group Metric Correlation Similar Terms

1 FNR Ratio
FNR Difference 0.9604 TP, FN

2 Equalized Odds
3 Average Odd Difference

Equal Opportunity 0.7677 TP, FN
Predictive Equality 0.5939 FP, TN
Disparate Impact 0.5631 FP, TP
Statistical Parity 0.5616 FP, TP

4 Error Difference
Error Ratio 0.8835 FP, FN
FPR Ratio 0.8686 FP
Discovery Difference 0.8341 FP
Discovery ratio 0.8049 FP
FOR Difference 0.6639 FN
FOR Ratio 0.6608 FN

5 Predictive Parity

Table S.12: Terms similarity and correlation comparison for each metric group in Compas Logit
Proposed experiment.
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Group Metric Correlation Similar Terms

1 Predictive Equality
Error Ratio 0.75 FP
Disparate Impact 0.75 FP
FPR Ratio 0.7342 FP, TN
Statistical Parity 0.7167 FP
Error Difference 0.7 FP
Average Odd Difference 0.65 FP, TN
FOR Difference 0.5833 TN
FOR Ratio 0.5667 TN

2 Predictive Parity
3 FNR Difference

FNR Ratio 0.8918 TP, FN
4 Equal Opportunity
5 Equalized Odds
6 Discovery Difference

Discovery ratio 0.9394 FP, TP

Table S.13: Terms similarity and correlation comparison for each metric group in Compas MLP
Proposed experiment.

Group Metric Correlation Similar Terms

1 FNR Ratio
FNR Difference 0.9306 TP, FN

2 FPR Ratio
Disparate Impact 0.9234 FP
Error Ratio 0.9063 FP
Statistical Parity 0.8379 FP
Error Difference 0.8156 FP
Discovery ratio 0.7719 FP
Predictive Equality 0.7695 FP, TN
Discovery Difference 0.7182 FP
FOR Difference 0.5814 TN
FOR Ratio 0.5814 TN

3 Average Odd Difference
Equal Opportunity 0.8167 TP, FN

4 Predictive Parity
5 Equalized Odds

Table S.14: Terms similarity and correlation comparison for each metric group in Compas RF
Proposed experiment.
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Group Metric Correlation Similar Terms

1 Discovery Difference
Discovery ratio 0.9734 FP, TP

2 Predictive Equality
FPR Ratio 1.0 FP, TN

3 FOR Difference
FOR Ratio 0.9667 TN, FN
Equalized Odds 0.6364 TN, FN

4 Disparate Impact
Error Ratio 0.8737 FP
Statistical Parity 0.8632 FP, TP
Error Difference 0.8179 FP

5 FNR Ratio
FNR Difference 0.9092 TP, FN

6 Average Odd Difference
Equal Opportunity 0.9167 TP, FN

7 Predictive Parity

Table S.15: Terms similarity and correlation comparison for each metric group in Compas SVC
Proposed experiment.

Group Metric Correlation Similar Terms

1 Discovery Difference
Discovery ratio 1.0 FP, TP
FOR Difference 1.0
FOR Ratio 1.0
FNR Difference 0.7857 TP
FNR Ratio 0.7857 TP
Error Ratio 0.6429 FP
Error Difference 0.6183 FP

2 Equal Opportunity
Predictive Parity 0.7857 TP
Average Odd Difference 0.7143 TP, FN

3 FPR Ratio
Predictive Equality 0.982 FP, TN
Disparate Impact 0.6183 FP
Statistical Parity 0.6183 FP
Equalized Odds 0.5455 FP, TN

Table S.16: Terms similarity and correlation comparison for each metric group in German KNN
Proposed experiment.
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Group Metric Correlation Similar Terms

1 Predictive Parity
2 Predictive Equality

FPR Ratio 1.0 FP, TN
Disparate Impact 1.0 FP
Statistical Parity 1.0 FP
Error Difference 0.6667 FP
Equal Opportunity 0.6667
Average Odd Difference 0.6667 FP, TN

3 FNR Difference
Equalized Odds 1.0 TP, FN
FNR Ratio 1.0 TP, FN

4 FOR Ratio
Discovery Difference 1.0
Discovery ratio 1.0
FOR Difference 1.0 TN, FN
Error Ratio 0.6667 FN

Table S.17: Terms similarity and correlation comparison for each metric group in German Logit
Proposed experiment.

Group Metric Correlation Similar Terms

1 FOR Difference
Discovery Difference 1.0
Discovery ratio 1.0
FPR Ratio 1.0 TN
Error Ratio 1.0 FN
FOR Ratio 1.0 TN, FN
FNR Difference 1.0 FN
Error Difference 0.7143 FN
FNR Ratio 0.7143 FN

2 Equalized Odds
Disparate Impact 1.0 FP, TP
Statistical Parity 1.0 FP, TP
Equal Opportunity 1.0 TP, FN
Predictive Parity 1.0 FP, TP
Average Odd Difference 0.7778 FP, TN, TP, FN

3 Predictive Equality

Table S.18: Terms similarity and correlation comparison for each metric group in German MLP
Proposed experiment.
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Group Metric Correlation Similar Terms

1 Error Ratio
FOR Difference 0.8281 FN
FOR Ratio 0.8281 FN
Error Difference 0.7143 FP, FN
Discovery Difference 0.6667 FP
Discovery ratio 0.6667 FP
FNR Difference 0.6447 FN
FNR Ratio 0.6447 FN
Predictive Equality 0.6429 FP

2 Disparate Impact
Statistical Parity 1.0 FP, TP
Predictive Parity 0.527 FP, TP

3 Equal Opportunity
Average Odd Difference 0.8563 TP, FN
Equalized Odds 0.7006 TP, FN

4 FPR Ratio

Table S.19: Terms similarity and correlation comparison for each metric group in German RF
Proposed experiment.

Group Metric Correlation Similar Terms

1 Error Difference
Equalized Odds 0.6 FP, FN
Error Ratio 0.6 FP, FN
Predictive Equality 0.6 FP
FPR Ratio 0.6 FP

2 FOR Difference
FOR Ratio 1.0 TN, FN
Discovery Difference 0.8
Discovery ratio 0.8
FNR Difference 0.8 FN
FNR Ratio 0.6 FN

3 Average Odd Difference
Disparate Impact 1.0 FP, TP
Statistical Parity 1.0 FP, TP
Equal Opportunity 0.8 TP, FN
Predictive Parity 0.8 FP, TP

Table S.20: Terms similarity and correlation comparison for each metric group in German SVC
Proposed experiment.
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Group Metric Correlation Similar Terms

1 Average Odd Difference
Equal Opportunity 0.8942 TP, FN
Predictive Equality 0.6891 FP, TN
FPR Ratio 0.6337 FP, TN
Predictive Parity 0.5031 FP, TP

2 Equalized Odds
3 Statistical Parity

Disparate Impact 0.9592 FP, TP
Error Ratio 0.9333 FP

4 FNR Difference
FNR Ratio 0.9527 TP, FN
Discovery Difference 0.5217 TP
Discovery ratio 0.5143 TP

5 FOR Ratio
FOR Difference 0.963 TN, FN

6 Error Difference

Table S.21: Terms similarity and correlation comparison for each metric group in Adult KNN
Base experiment.

Group Metric Correlation Similar Terms

1 FOR Difference
FOR Ratio 0.9567 TN, FN
Predictive Parity 0.6996
Predictive Equality 0.637 TN
FPR Ratio 0.5654 TN
Average Odd Difference 0.5135 TN, FN

2 FNR Difference
FNR Ratio 0.6518 TP, FN
Equalized Odds 0.5569 TP, FN

3 Equal Opportunity
4 Discovery Difference

Discovery ratio 0.9742 FP, TP
5 Error Ratio

Disparate Impact 0.9903 FP
Statistical Parity 0.9389 FP

6 Error Difference

Table S.22: Terms similarity and correlation comparison for each metric group in Adult Logit
Base experiment.
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Group Metric Correlation Similar Terms

1 Predictive Parity
FOR Ratio 0.5947
FOR Difference 0.5639

2 Error Ratio
Disparate Impact 0.9881 FP
Statistical Parity 0.8685 FP

3 Error Difference
4 FNR Difference

Equalized Odds 0.6944 TP, FN
FNR Ratio 0.5544 TP, FN

5 Average Odd Difference
Predictive Equality 0.8308 FP, TN
FPR Ratio 0.8069 FP, TN
Equal Opportunity 0.7772 TP, FN

6 Discovery Difference
Discovery ratio 0.9315 FP, TP

Table S.23: Terms similarity and correlation comparison for each metric group in Adult MLP
Base experiment.

Group Metric Correlation Similar Terms

1 Equalized Odds
FNR Difference 0.6882 TP, FN

2 Statistical Parity
Disparate Impact 0.9037 FP, TP
Error Ratio 0.8876 FP

3 Error Difference
4 FNR Ratio

FOR Ratio 0.5025 FN
5 Discovery Difference

Discovery ratio 0.8733 FP, TP
6 FPR Ratio

Average Odd Difference 0.7705 FP, TN
Predictive Equality 0.6784 FP, TN
FOR Difference 0.6151 TN
Equal Opportunity 0.5244

7 Predictive Parity

Table S.24: Terms similarity and correlation comparison for each metric group in Adult RF Base
experiment.
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Group Metric Correlation Similar Terms

1 Disparate Impact
Error Ratio 0.9976 FP
Statistical Parity 0.962 FP, TP

2 Equalized Odds
Error Difference 0.5819 FP, FN
FNR Difference 0.5229 TP, FN

3 FPR Ratio
Predictive Equality 0.978 FP, TN
Average Odd Difference 0.9235 FP, TN

4 FOR Difference
FOR Ratio 0.6697 TN, FN
Predictive Parity 0.5429

5 Equal Opportunity
6 Discovery Difference

Discovery ratio 0.998 FP, TP
7 FNR Ratio

Table S.25: Terms similarity and correlation comparison for each metric group in Adult SVC
Base experiment.

Group Metric Correlation Similar Terms

1 Disparate Impact
Statistical Parity 0.9983 FP, TP
Error Ratio 0.998 FP
Discovery ratio 0.765 FP, TP
Discovery Difference 0.7583 FP, TP
Error Difference 0.7541 FP

2 Average Odd Difference
Equalized Odds 0.919 FP, TN, TP, FN
Predictive Equality 0.8561 FP, TN
FPR Ratio 0.7605 FP, TN
Equal Opportunity 0.7001 TP, FN
Predictive Parity 0.6926 FP, TP
FOR Ratio 0.5725 TN, FN
FOR Difference 0.5672 TN, FN

3 FNR Ratio
FNR Difference 0.8847 TP, FN

Table S.26: Terms similarity and correlation comparison for each metric group in Bank KNN
Base experiment.
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Group Metric Correlation Similar Terms

1 Average Odd Difference
Equalized Odds 0.993 FP, TN, TP, FN
Predictive Equality 0.9647 FP, TN
Equal Opportunity 0.9166 TP, FN
FPR Ratio 0.8715 FP, TN
Predictive Parity 0.738 FP, TP

2 Error Ratio
Disparate Impact 0.999 FP
Statistical Parity 0.9969 FP
Discovery ratio 0.893 FP
Discovery Difference 0.8213 FP
FNR Difference 0.7471 FN
FNR Ratio 0.7123 FN
Error Difference 0.6813 FP, FN

3 FOR Ratio
FOR Difference 0.9524 TN, FN

Table S.27: Terms similarity and correlation comparison for each metric group in Bank Logit
Base experiment.

Group Metric Correlation Similar Terms

1 Disparate Impact
Error Ratio 0.995 FP
Statistical Parity 0.9932 FP, TP
Discovery Difference 0.7904 FP, TP
Discovery ratio 0.7001 FP, TP

2 FNR Difference
FNR Ratio 0.7926 TP, FN

3 FOR Ratio
Equalized Odds 0.5753 TN, FN
Predictive Equality 0.5395 TN
Predictive Parity 0.5348

4 FOR Difference
5 Average Odd Difference

Equal Opportunity 0.7969 TP, FN
FPR Ratio 0.6131 FP, TN

6 Error Difference

Table S.28: Terms similarity and correlation comparison for each metric group in Bank MLP
Base experiment.
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Group Metric Correlation Similar Terms

1 FNR Ratio
Statistical Parity 0.8127 TP
Error Ratio 0.7827 FN
Disparate Impact 0.7802 TP
Discovery Difference 0.623 TP
Error Difference 0.6094 FN
Discovery ratio 0.6057 TP
FOR Ratio 0.5517 FN
FNR Difference 0.5243 TP, FN

2 Predictive Equality
Average Odd Difference 0.9271 FP, TN
Equalized Odds 0.9139 FP, TN
Equal Opportunity 0.7557
FPR Ratio 0.6299 FP, TN
Predictive Parity 0.503 FP

3 FOR Difference

Table S.29: Terms similarity and correlation comparison for each metric group in Bank RF Base
experiment.

Group Metric Correlation Similar Terms

1 FNR Ratio
FOR Ratio 0.5831 FN
Discovery Difference 0.5696 TP
Error Ratio 0.5575 FN
Statistical Parity 0.5516 TP
Disparate Impact 0.547 TP
FNR Difference 0.5386 TP, FN
Discovery ratio 0.5022 TP

2 Equalized Odds
Average Odd Difference 0.9528 FP, TN, TP, FN
Predictive Equality 0.9527 FP, TN
FPR Ratio 0.9182 FP, TN
Predictive Parity 0.6264 FP, TP

3 FOR Difference
Error Difference 0.6618 FN

4 Equal Opportunity

Table S.30: Terms similarity and correlation comparison for each metric group in Bank SVC
Base experiment.
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Group Metric Correlation Similar Terms

1 Discovery ratio
Discovery Difference 0.9965 FP, TP
FNR Difference 0.6603 TP
FNR Ratio 0.6128 TP

2 FOR Difference
FOR Ratio 0.9983 TN, FN
Predictive Parity 0.6582

3 Average Odd Difference
Equal Opportunity 0.9159 TP, FN
Predictive Equality 0.6572 FP, TN
FPR Ratio 0.6235 FP, TN
Disparate Impact 0.5435 FP, TP
Statistical Parity 0.5429 FP, TP
Error Ratio 0.5152 FP, FN
Error Difference 0.5136 FP, FN

4 Equalized Odds

Table S.31: Terms similarity and correlation comparison for each metric group in Compas KNN
Base experiment.

Group Metric Correlation Similar Terms

1 FPR Ratio
Disparate Impact 0.8494 FP
Error Ratio 0.7843 FP
Predictive Equality 0.7626 FP, TN
FOR Ratio 0.647 TN
FOR Difference 0.6431 TN
Statistical Parity 0.6199 FP
Error Difference 0.5851 FP

2 Equalized Odds
3 Average Odd Difference

Equal Opportunity 0.6672 TP, FN
4 Discovery ratio

Discovery Difference 0.887 FP, TP
5 FNR Ratio

FNR Difference 0.8558 TP, FN
6 Predictive Parity

Table S.32: Terms similarity and correlation comparison for each metric group in Compas Logit
Base experiment.
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Group Metric Correlation Similar Terms

1 FPR Ratio
Predictive Equality 0.9486 FP, TN
Error Ratio 0.9011 FP
Disparate Impact 0.8832 FP
Statistical Parity 0.8677 FP
Error Difference 0.8656 FP
Average Odd Difference 0.6749 FP, TN
FOR Difference 0.6579 TN
FOR Ratio 0.6334 TN
Discovery ratio 0.5801 FP
Discovery Difference 0.5776 FP

2 FNR Difference
FNR Ratio 0.9458 TP, FN

3 Predictive Parity
Equal Opportunity 0.7185 TP
Equalized Odds 0.6248 FP, TP

Table S.33: Terms similarity and correlation comparison for each metric group in Compas MLP
Base experiment.

Group Metric Correlation Similar Terms

1 FPR Ratio
Predictive Equality 0.9637 FP, TN
Error Ratio 0.9235 FP
Average Odd Difference 0.9131 FP, TN
Disparate Impact 0.9046 FP
Error Difference 0.9027 FP
Statistical Parity 0.8969 FP
Discovery ratio 0.6337 FP
Discovery Difference 0.6317 FP
FOR Difference 0.6262 TN
Equal Opportunity 0.5979
FOR Ratio 0.5835 TN

2 Predictive Parity
Equalized Odds 0.6012 FP, TP

3 FNR Difference
FNR Ratio 0.9584 TP, FN

Table S.34: Terms similarity and correlation comparison for each metric group in Compas RF
Base experiment.
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Group Metric Correlation Similar Terms

1 Statistical Parity
Disparate Impact 0.9993 FP, TP
Error Ratio 0.9846 FP
Error Difference 0.9813 FP

2 FNR Ratio
FNR Difference 0.7614 TP, FN

3 Predictive Equality
FPR Ratio 0.9377 FP, TN
Average Odd Difference 0.9268 FP, TN
Equal Opportunity 0.7735
Equalized Odds 0.6134 FP, TN

4 Discovery Difference
Discovery ratio 0.9999 FP, TP

5 FOR Ratio
FOR Difference 0.9939 TN, FN
Predictive Parity 0.8784

Table S.35: Terms similarity and correlation comparison for each metric group in Compas SVC
Base experiment

Group Metric Correlation Similar Terms

1 FOR Ratio
FOR Difference 0.9843 TN, FN
Discovery Difference 0.8222
Error Ratio 0.8204 FN
FNR Ratio 0.8197 FN
Discovery ratio 0.8125
FNR Difference 0.7918 FN
Predictive Equality 0.6993 TN
Error Difference 0.6344 FN
Equalized Odds 0.6188 TN, FN
FPR Ratio 0.5714 TN

2 Disparate Impact
Statistical Parity 0.9814 FP, TP
Average Odd Difference 0.7235 FP, TP

3 Equal Opportunity
Predictive Parity 0.5766 TP

Table S.36: Terms similarity and correlation comparison for each metric group in German KNN
Base experiment.
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Group Metric Correlation Similar Terms

1 Statistical Parity
Disparate Impact 0.9917 FP, TP
FPR Ratio 0.9314 FP
Discovery ratio 0.8567 FP, TP
Discovery Difference 0.6053 FP, TP
Average Odd Difference 0.5382 FP, TP
Equal Opportunity 0.5058 TP

2 FOR Ratio
FOR Difference 0.9914 TN, FN
FNR Ratio 0.8865 FN
Error Ratio 0.7588 FN
FNR Difference 0.7439 FN
Error Difference 0.6792 FN

3 Predictive Equality
4 Predictive Parity
5 Equalized Odds

Table S.37: Terms similarity and correlation comparison for each metric group in German Logit
Base experiment.

Group Metric Correlation Similar Terms

1 FNR Difference
FNR Ratio 0.7641 TP, FN
FOR Ratio 0.7618 FN
FOR Difference 0.7479 FN
Error Ratio 0.7319 FN
FPR Ratio 0.54
Discovery Difference 0.5317 TP
Predictive Equality 0.5285

2 Discovery ratio
3 Equalized Odds
4 Equal Opportunity

Average Odd Difference 0.9008 TP, FN
Predictive Parity 0.5317 TP

5 Statistical Parity
Disparate Impact 0.9753 FP, TP

6 Error Difference

Table S.38: Terms similarity and correlation comparison for each metric group in German MLP
Base experiment.
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Group Metric Correlation Similar Terms

1 Average Odd Difference
Equal Opportunity 0.9646 TP, FN
Predictive Equality 0.5142 FP, TN

2 Predictive Parity
Statistical Parity 0.8788 FP, TP
Disparate Impact 0.8407 FP, TP
Error Difference 0.5445 FP

3 Equalized Odds
4 FNR Ratio

FOR Ratio 0.9862 FN
FNR Difference 0.9175 TP, FN
FOR Difference 0.8848 FN

5 Error Ratio
6 Discovery ratio

Discovery Difference 0.9892 FP, TP
FPR Ratio 0.8519 FP

Table S.39: Terms similarity and correlation comparison for each metric group in German RF
Base experiment.

Group Metric Correlation Similar Terms

1 Equalized Odds
2 Discovery Difference

Discovery ratio 0.9983 FP, TP
Error Ratio 0.9089 FP
FNR Difference 0.89 TP
FOR Difference 0.8073
FOR Ratio 0.6759
FPR Ratio 0.5958 FP
Predictive Equality 0.5944 FP
FNR Ratio 0.5279 TP

3 Disparate Impact
Statistical Parity 0.9983 FP, TP
Average Odd Difference 0.9154 FP, TP
Equal Opportunity 0.8276 TP
Error Difference 0.6288 FP
Predictive Parity 0.5938 FP, TP

Table S.40: Terms similarity and correlation comparison for each metric group in German SVC
Base experiment.
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Figure S.1: Proposed Experiment clusters using Adult dataset and KNN model.
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Figure S.2: Proposed Experiment clusters using Adult dataset and Logit model.
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Figure S.3: Proposed Experiment clusters using Adult dataset and MLP model.
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Figure S.4: Proposed Experiment clusters using Adult dataset and RF model.
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Figure S.5: Proposed Experiment clusters using Adult dataset and SVC model.
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Figure S.6: Proposed Experiment clusters using Bank dataset and KNN model.
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Figure S.7: Proposed Experiment clusters using Bank dataset and Logit model.
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Figure S.8: Proposed Experiment clusters using Bank dataset and MLP model.
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Figure S.9: Proposed Experiment clusters using Bank dataset and RF model.
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Figure S.10: Proposed Experiment clusters using Bank dataset and SVC model.
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Figure S.11: Proposed Experiment clusters using Compas dataset and KNN model.
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Figure S.12: Proposed Experiment clusters using Compas dataset and Logit model.
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Figure S.13: Proposed Experiment clusters using Compas dataset and MLP model.
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Figure S.14: Proposed Experiment clusters using Compas dataset and RF model.
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Figure S.15: Proposed Experiment clusters using Compas dataset and SVC model.
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Figure S.16: Proposed Experiment clusters using German dataset and KNN model.

96



Appendix A

FOR
Ratio
1.0

Error
Ratio
0.67

Discovery
Difference

1.0

Discovery
ratio
1.0

FOR
Difference

1.0

Metrics

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Va
lu

es

0 0 0 0 0

1

1

1
1

1

FOR Ratio cluster:
Proposed experiment using German Logit

ref - male: 0
female: 1

Biased
Unbiased

FNR
Difference

1.0

Equalized
Odds
1.0

FNR
Ratio
1.0

Metrics

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Va
lu

es

0 0 0
1 1 1

FNR Difference cluster:
Proposed experiment using German Logit

ref - male: 0
female: 1

Biased
Unbiased

Predictive
Parity
1.0

Metrics

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Va
lu

es

0
1

Predictive Parity cluster:
Proposed experiment using German Logit

ref - male: 0
female: 1

Biased
Unbiased

Figure S.17: Proposed Experiment clusters using German dataset and Logit model.
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Figure S.18: Proposed Experiment clusters using German dataset and MLP model.
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Figure S.19: Proposed Experiment clusters using German dataset and RF model.
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Figure S.20: Proposed Experiment clusters using German dataset and SVC model.
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Figure S.21: Base Experiment clusters using Adult dataset and KNN model.
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Figure S.22: Base Experiment clusters using Adult dataset and Logit model.
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Figure S.23: Base Experiment clusters using Adult dataset and MLP model.
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Figure S.24: Base Experiment clusters using Adult dataset and RF model.
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Figure S.25: Base Experiment clusters using Adult dataset and SVC model.
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Figure S.26: Base Experiment clusters using Bank dataset and KNN model.
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Figure S.27: Base Experiment clusters using Bank dataset and Logit model.
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Figure S.28: Base Experiment clusters using Bank dataset and MLP model.
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Figure S.29: Base Experiment clusters using Bank dataset and RF model.

Equalized
Odds
1.0

Predictive
Equality

0.95

FPR
Ratio
0.92

Average
Odd

Difference
0.95

Predictive
Parity
0.63

Metrics

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Va
lu

es

0 0 0 0 01 1 1 1 12 2 2 2
2

Equalized Odds cluster:
Base experiment using Bank SVC

ref - 25 - 45: 0
Greater than 45: 1
Less than 25: 2

Biased
Unbiased

FOR
Difference

1.0

Error
Difference

0.66

Metrics

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Va
lu

es

0 0
1

1

2

2

FOR Difference cluster:
Base experiment using Bank SVC

ref - 25 - 45: 0
Greater than 45: 1
Less than 25: 2

Biased
Unbiased

Equal
Opportunity

1.0

Metrics

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Va
lu

es

0 1 2

Equal Opportunity cluster:
Base experiment using Bank SVC

ref - 25 - 45: 0
Greater than 45: 1
Less than 25: 2

Biased
Unbiased

FNR
Ratio
1.0

Error
Ratio
0.56

Discovery
Difference

0.57

Discovery
ratio
0.5

FOR
Ratio
0.58

Disparate
Impact
0.55

Statistical
Parity
0.55

FNR
Difference

0.54

Metrics

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Va
lu

es

0 0 0 0 0 0 0 0

1

1

1 1
1

1
1

1

2 2

2 2

2 2

2

2

FNR Ratio cluster:
Base experiment using Bank SVC

ref - 25 - 45: 0
Greater than 45: 1
Less than 25: 2

Biased
Unbiased

Figure S.30: Base Experiment clusters using Bank dataset and SVC model.
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Figure S.31: Base Experiment clusters using Compass dataset and KNN model.
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Figure S.32: Base Experiment clusters using Compass dataset and Logit model.
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Figure S.33: Base Experiment clusters using Compass dataset and MLP model.
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Figure S.34: Base Experiment clusters using Compass dataset and RF model.

111



Appendix A

FOR
Ratio
1.0

FOR
Difference

0.99

Predictive
Parity
0.88

Metrics

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Va
lu

es

0 0 0

1
1

12 2 23 3 34 4

4

5

5 5

FOR Ratio cluster:
Base experiment using Compas SVC

Other: 0
African-American: 1
ref - Caucasian: 2
Hispanic: 3
Asian: 4
Native American: 5

Biased
Unbiased

FNR
Ratio
1.0

FNR
Difference

0.76

Metrics

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Va
lu

es

0 01 12 23 34 4

5 5

FNR Ratio cluster:
Base experiment using Compas SVC

Other: 0
African-American: 1
ref - Caucasian: 2
Hispanic: 3
Asian: 4
Native American: 5

Biased
Unbiased

Discovery
Difference

1.0

Discovery
ratio
1.0

Metrics

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Va
lu

es

0
0

1
1

2 2
3

3

4 4

5

5

Discovery Difference cluster:
Base experiment using Compas SVC

Other: 0
African-American: 1
ref - Caucasian: 2
Hispanic: 3
Asian: 4
Native American: 5

Biased
Unbiased

Predictive
Equality

1.0

Equalized
Odds
0.61

FPR
Ratio
0.94

Equal
Opportunity

0.77

Average
Odd

Difference
0.93

Metrics

0.0

0.5

1.0

1.5

2.0

Va
lu

es

0 0

0

0 01 1

1

1 12 2 2 2 23 3

3

3 34 4

4

4 4

5 5 5

5

5

Predictive Equality cluster:
Base experiment using Compas SVC

Other: 0
African-American: 1
ref - Caucasian: 2
Hispanic: 3
Asian: 4
Native American: 5

Biased
Unbiased

Statistical
Parity
1.0

Error
Difference

0.98

Error
Ratio
0.98

Disparate
Impact

1.0

Metrics

0.0

0.5

1.0

1.5

2.0

Va
lu

es

0 0

0 0

1 1

1
1

2 2 2 2
3 3

3 3
4

4

4 4

5 5

5 5

Statistical Parity cluster:
Base experiment using Compas SVC

Other: 0
African-American: 1
ref - Caucasian: 2
Hispanic: 3
Asian: 4
Native American: 5

Biased
Unbiased

Figure S.35: Base Experiment clusters using Compass dataset and SVC model.
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Figure S.36: Base Experiment clusters using German dataset and KNN model.
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Figure S.37: Base Experiment clusters using German dataset and Logit model.
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Figure S.38: Base Experiment clusters using German dataset and MLP model.
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Figure S.39: Base Experiment clusters using German dataset and RF model.
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