AVALIAÇÃO DA RESISTÊNCIA AO STRESS CRACKING DURANTE FADIGA EM COMPÓSITOS POLIMÉRICOS COM FARINHA DE MADEIRA

Joyce B. Azevedo¹, *Ricardo Correia Sanches¹, Pollyana da Silva Melo¹

1 – Faculdade de Tecnologia Senai Cimatec, Engenharia de Materiais, PIBIC, Fapesb E-mails: joyce.azevedo@fieb.org.br, ricardocsanchess@gmail.com, pollyana.melo@fieb.org.br

Palavras Chave: Compósitos, Farinha de Madeira, Stress Cracking, Resistência a Fadiga

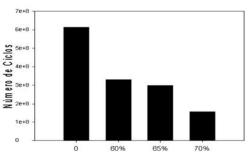
Introdução

Neste estudo foi investigado o efeito do stress cracking durante a fadiga de compósitos com farinha de madeira. A obtenção de dados sobre a vida em fadiga e a resistência ao stress cracking desses compósitos é muito importante, já que as estimativas na literatura indicam que o maior número de falhas em peças obtidas por compósitos podem ser atribuídas a fadiga mecânica. A água foi escolhida como agente para ação do stress cracking já que as aplicações voltadas para o uso de polímero madeira estão relacionadas a construção civil como pisos, decks, rodapés. Para os ensaios foram usados compostos de PEAD com diferentes concentrações de pó madeira. Os ensaios foram feito na máquina Instron Electron Puls-3000, com célula de carga de 10kN, utilizou-se frequência de 1Hz e um nível de carregamento de 25% da carga máxima obtida no ensaio de tração.

Resultados e Discussão

Avaliação da resistência a tração.

Tabela 1: Resistência a Tração dos Compósitos


Formulação	Força Máxima (N)
Puro	878,4 ± 61,1
60% Mad.	381,2 ± 50,0
65% Mad.	496,8 ± 61,6
70% Mad.	751,6 ± 11,6

Resistencia ao stress cracking durante a fadiga. **Tabela 2:** Parâmetros do ensaio de Resistência a Fadiga

Parâmetros	% Farinha de Madeira			
	Puro	60%	65%	70%
Carga Máxima de Fadiga (N)	219,6	381,2	469,8	751,0
Carga Mínima (N)	22,00	9,5	12,4	18,8
Carga Média (N)	120,8	52,4	68,3	103,3
Amplitude (N)	98,8	42,9	55,9	84,5
Frequência (Hz)	1	1	1	1

Tabela 3: Número de ciclos dos compósitos analisados

Formulação	Número de Ciclos
Puro	613.487
60%	329.894
65%	298.457
70%	156.808

Concentração de Farinha de Madeira

Figura 1: Número de ciclos em função da concentração de farinha de madeira.

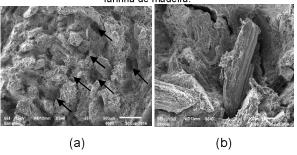


Figura 2: Micrografia da superfície de fratura dos compósitos: (a) 65% de Farinha de Madeira; (b) 70% de Farinha de Madeira

Conclusões

Com a análise de todos os dados podemos observar a fragilidade do material quando é adicionado um percentual elevado de carga. A resistência a fadiga foi fortemente influenciada pelas concentrações de cargas gerando falhas no material. Este comportamento foi justificado pela fraca adesão entre as fases dos compósitos conforme a morfologia da superfície de fratura. A influência da água não pode ser avaliada de maneira eficaz.

Agradecimentos

Os autores agradecem a Fapesb e ao SENAI CIMATEC pelo apoio nesta pesquisa.

¹Farias, R. R.; Santos, Z. I. G.; Azevedo, J. B.; *in Anais do 11º Congresso Brasileiro de Polímeros*, Campos do Jordão, 2011.

²Cruz, M. C. A.; Sousa, J. A.; in Anais do 19° Congresso Brasileiro de Engenharia e Ciência dos Materiais, Foz do Iguaçu, 2010

³Mondardo, F. H.; *Dissertação de Mestrado*, Universidade Federal do Rio Grande do Sul, 2006.